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Resummation by
renormalization group (RG)
evolution



We now discuss renormalization and RG evolution
in the effective theory.

It would be nice to resum logarithmically enhanced
contributions to a physical cross section. SCET has
been used to resum log’s in DIS, Drell-Yan, Higgs
production, event shapes, ...

For simplicity, we’ll instead just discuss the Sudakov
form factor. In this case, we have just derived the
necessary factorization theorem. Furthermore it
also serves as an introduction to the discussion of
n-point amplitudes in the last lecture.



Matching

The Fourier transform of the matching coefficient
of the current operator
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is obtained by evaluating the on-shell form factor.
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This gives the bare Wilson coefficient Cf‘(?) (Q%).



Renormalization

At one loop, one finds (3-loop is known!)
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Let us define a renormalized Wilson coefficient by
absorbing the divergences into a Z-factor:

Cv (Q% 1) = lim Z 71(Q? u?) CV(Q%)
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RG equation

The renormalized Wilson coefficient
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fulfills the renormalization group equation:
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At one loop:
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name will be explained later
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Aside: Three-loop anomalous dimensio

Divergencies of the on-shell form factor are known to 3-loops,
(Moch, Vermaseren Vogt ‘05). Since last year, also the Pnite pieces a

known at this accuracy. Using these results, one can extract the
anomalous dimension to three loops:
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What is special, is that the RG equation
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contains explicit logarithmic dependence on u.This
is characteristic for problems with Sudakov double
logarithms.

The solution of this equation (exercise) sums the
logarithmic terms to all orders. To obtain the
solution, use that
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Solution
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Evolution factor
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The explicit solution Is obtained by plugging in the
perturbative expansion for thg-function and the
anomalous dimensions
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Red part corresponds to Oleading-log accuracyO.



The perturbation expansion for the fixed order
result for Cy
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breaks down for u <« Q or > Q because the
logarithms become large.
In contrast, for uy=Q the RG improved result

By (Q% 1) = U(pn, 1) &y (Q%, pn)

is valid for any scale u for which o is perturbative.



Why resummation?

In problems with widely separated physical scales
A1 > 1, fixed order perturbation theory is not

appropriate

¥ Large logarithms,” Log™(A1/A2) and Sudakov
logarithms os" Log?®(A1/A2).

® Scale in coupling? as(A1) or as(A2)?
Standard solution

¥ Use effective theories to separate the effect:
associated with different scales.

¥ RG evolution in the effective theory resums
large logOs.



Factorization ®® .
We have integrated out the hard contribution and
absorbed it into the Wilson coefficient & (Q?, p?).

The decoupling further factorized the soft and
collinear interactions, so that our matrix element
factorizes into collinear functions f(LQ, 11*) and
F(P2,u?) times a soft function 8(! 2, 1i?).

F(Q* L% P?) = &v(Q* u®) HL?, pi?) H(P?, 1i?) B(AL, 1°)

Each function fulfills a RG equation of the same
structure as the one for & (Q?, u?).



Evaluate each part at its characteristic scale, evolve to
common reference scale
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Each contribution is evaluated at its natural scale. No
large perturbative logarithms.
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Factorization constraint on the anomalous dimensions
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For this cancellation to work, it is crucial that the scale
dependence is logarithmic, with a universal coefficient.



Cusp anomalous dimension

Wilson lines with cusps require renormalization and
the anomalous dimension is proportional to the cusp
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