1. The renormalized quark mass $m_{q}(\mu)$ in the $\overline{\mathrm{MS}}$ scheme is related to the bare mass m_{q} through

$$
m_{q}=Z_{q} m_{q}(\mu)=\left(1-3 C_{F} \frac{\alpha_{s}(\mu)}{4 \pi} \frac{1}{\epsilon}\right) m_{q}(\mu) .
$$

a.) The mass fulfills the RG equation ${ }^{1}$

$$
\begin{equation*}
\mu \frac{d m(\mu)}{d \mu}=\gamma_{m}\left(\alpha_{s}\right) m(\mu)=\left(\gamma_{m}^{(0)} \frac{\alpha_{s}(\mu)}{4 \pi}+\ldots\right) m(\mu) . \tag{1}
\end{equation*}
$$

Derive the value of the one-loop anomalous dimension $\gamma_{m}^{(0)}$ using the magic relation (2) below.
b.) Assume that the value of $m_{q}(\mu)$ is known for some reference scale $\mu=\mu_{0}$. Solve the RG equation (1) at one-loop level to obtain the quark mass $m_{q}(\mu)$ as a function of $m_{q}\left(\mu_{0}\right)$ and the coupling constants $\alpha(\mu)$ and $\alpha\left(\mu_{0}\right)$. Use

$$
\mu \frac{d \alpha_{s}}{d \mu}=\frac{d \alpha_{s}}{d \ln \mu}=\beta\left(\alpha_{s}\right)=-2 \alpha_{s}\left(\beta_{0} \frac{\alpha_{s}(\mu)}{4 \pi}+\ldots\right)
$$

to rewrite the integration over the scale

$$
\int d \ln \mu=\int \frac{d \alpha}{\beta(\alpha)}
$$

as an integral over the running coupling and expand $\beta(\alpha)$ to leading order in α_{s}. Does the mass $m_{q}(\mu)$ increase or decrease as one evolves from the reference scale μ_{0} to lower scales?
2. In this exercise we derive the "magic relation"

$$
\begin{equation*}
\gamma=2 \alpha_{s} \frac{\partial Z_{[1]}}{\partial \alpha_{s}} \tag{2}
\end{equation*}
$$

between an anomalous dimension γ of an operators and the $1 / \epsilon$-pole of the associated Z factor

$$
Z=1+\sum_{k=1}^{\infty} \frac{1}{\epsilon^{k}} Z_{[k]}\left(\alpha_{s}\right),
$$

in the $\overline{\mathrm{MS}}$ scheme in dimensional regularization.

[^0]a.) We first need the β function in d dimensions. To this end, use that $\mu \frac{d}{d \mu} \alpha_{s}^{(0)}=0$, with bare coupling $\alpha_{s}^{(0)}=Z_{g}^{2} \mu^{2 \epsilon} \alpha_{s}(\mu)$ to show
$$
\beta\left(\alpha_{s}, \epsilon\right)=-2 \epsilon \alpha_{s}-2 \alpha_{s} Z_{g}^{-1} \mu \frac{d}{d \mu} Z_{g}
$$
b.) Now write $\beta\left(\alpha_{s}, \epsilon\right)=\beta\left(\alpha_{s}\right)+\sum_{k=1}^{\infty} \epsilon^{k} \beta_{k}\left(\alpha_{s}\right)$, and use $\mu \frac{d}{d \mu} Z_{g}=\frac{\partial Z_{g}}{\partial \alpha_{s}} \beta\left(\alpha_{s}, \epsilon\right)$ to find
$$
Z_{g} \beta\left(\alpha_{s}, \epsilon\right)=-2 \epsilon \alpha_{s} Z_{g}-2 \alpha_{s} \frac{\partial Z_{g}}{\partial \alpha_{s}} \beta\left(\alpha_{s}, \epsilon\right) .
$$

Expanding this relation at large ϵ, you should find $\beta_{1}=-2 \alpha_{s}, \beta_{k}=0$ for $k>1$, and the first "magic relation" $\beta\left(\alpha_{s}\right)=4 \alpha_{s}^{2} \frac{\partial Z_{1 g}}{\partial \alpha_{s}}$, where $Z_{1 g}$ is the first term in the ϵ expansion of Z_{g}.
c.) Finally, repeat the same strategy for the anomalous dimension encountered in the lecture, which should lead to Eq. (2).

[^0]: ${ }^{1}$ In the literature, the RG equation for the mass is often defined with the opposite sign, which flips the sign of the coefficients. Also for the Z-factor of operators different conventions exist.

