1. The elements of the lie group $S U(N)$ can be represented as

$$
U(\{\alpha\})=\exp \left(i \boldsymbol{T}^{a} \alpha^{a}\right)
$$

where the matrices \boldsymbol{T}^{a} are the generators of the group with $a=1 \ldots N^{2}-1$. The parameters α^{a} characterize the group element. The multiplication properties of the group elements are encoded in the commutation relations of the generators which take the form

$$
\begin{equation*}
\left[\boldsymbol{T}^{a}, \boldsymbol{T}^{b}\right]=i f^{a b c} \boldsymbol{T}^{c} \tag{1}
\end{equation*}
$$

The constants $f^{a b c}$ are called the structure constants of the group.
The representation of the group $S U(N)$ in terms of $N \times N$ matrices is called the fundamental representation $\boldsymbol{T}^{a} \equiv \boldsymbol{T}_{F}^{a}=\boldsymbol{t}^{a}$. For $N=3$, the generators are related to the Gell-Mann matrices $\boldsymbol{t}^{a}=\boldsymbol{\lambda}^{a} / 2$.
a.) Show that the unitarity of the $S U(N)$ matrices entails hermiticity of the generators and that the requirement $\operatorname{det} U(\{\alpha\})=1$ implies that the generators have to be traceless.
b.) Show that the structure constants $f_{a b c}$ of $S U(N)$ are real and fulfill the Jacobi identity

$$
\begin{equation*}
f^{a b d} f^{d c e}+f^{b c d} f^{d a e}+f^{c a d} f^{d b e}=0 \tag{2}
\end{equation*}
$$

This identity can be obtained by considering the Jacobi identity

$$
[[A, B], C]+[[B, C], A]+[[C, A], B]=0
$$

for the generator matrices \boldsymbol{T}^{a} and rewriting the commutators in terms of structure constants using their defining relation (1).
c.) Define generator matrices of the adjoint representation as

$$
\left(\boldsymbol{T}_{A}^{a}\right)_{b c}=-i f^{a b c}
$$

and show that (2) implies that these indeed fulfill the Lie algebra (1).
2. Show that the conjugate matrices of the fundamental representation $\boldsymbol{T}_{F}^{a}=\boldsymbol{t}^{a}$, defined as

$$
\boldsymbol{T}_{\bar{F}}^{a}=-\left(\boldsymbol{t}^{a}\right)^{T}=-\left(\boldsymbol{t}^{a}\right)^{*}
$$

are a representation of $S U(N)$. What is the conjugate representation of the adjoint representation?
3. For a representation \boldsymbol{T}_{R}^{a} of a Lie group, the quantity $\boldsymbol{C}_{R}=\sum_{a} \boldsymbol{T}_{R}^{a} \boldsymbol{T}_{R}^{a}$ is called the quadratic Casimir operator of the representation.
(a) Show that this quantity commutes with all generators $\left[\boldsymbol{C}_{R}, \boldsymbol{T}_{R}^{b}\right]=0$. For an irreducible representation, Schur's lemma then implies that the operator is proportional to the unit matrix $C_{R}=C_{R} \mathbf{1}$.
(b) Compute the values of C_{F} and C_{A}, the Casimir invariants of the fundamental representation $\boldsymbol{T}_{F}^{a}=\boldsymbol{t}^{a}$ snd and the adjoint representation, respectively, i.e.

$$
\boldsymbol{t}^{a} \boldsymbol{t}^{a}=C_{F} \mathbf{1}, \quad f^{a c d} f^{b c d}=C_{A} \delta^{a b}
$$

Remember that we normalized

$$
\operatorname{Tr}\left(\boldsymbol{t}^{a} \boldsymbol{t}^{b}\right)=T_{F} \delta^{a b}=\frac{1}{2} \delta^{a b} .
$$

For C_{A}, show first that

$$
f^{a c d} f^{b c d}=4 \operatorname{Tr}\left(C_{F} \boldsymbol{t}^{a} \boldsymbol{t}^{b}-\boldsymbol{t}^{a} \boldsymbol{t}^{c} \boldsymbol{t}^{b} \boldsymbol{t}^{c}\right)
$$

and simplify the last term using

$$
\begin{equation*}
\boldsymbol{t}_{i j}^{a} \boldsymbol{t}_{k l}^{a}=\frac{1}{2}\left(\delta_{i l} \delta_{j k}-\frac{1}{N} \delta_{i j} \delta_{k l}\right), \tag{3}
\end{equation*}
$$

which follows when considering the decomposition of a general $N \times N$ matrix into the unit matrix and \boldsymbol{t}^{a}.
a.) Bonus: Derive the $S U(N)$ Fierz identity (3).

