## Effective Field Theory

In this exercise we study the Euler-Heisenberg Lagrangian,

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{C_{1}}{m_{e}^{4}}\left(F_{\mu \nu} F^{\mu \nu}\right)^{2}+\frac{C_{2}}{m_{e}^{4}} F_{\mu \nu} F^{\nu \rho} F_{\rho \sigma} F^{\sigma \mu}+\mathcal{O}\left(\frac{E^{6}}{m_{e}^{6}}\right),
$$

in great detail, including the matching to QED.

1. Derive the momentum-space Feynman rules for the interaction terms, symmetrizing in the external legs.
2. Using power-counting arguments, we showed in the lecture that the $\gamma \gamma \rightarrow \gamma \gamma$ cross section is suppressed by $\alpha^{4} E^{6} / m_{e}^{8}$ at low photon energies. What is the relevant suppression factor for the $\gamma \gamma \rightarrow \gamma \gamma \gamma \gamma$ process?
3. Using the above Feynman rules, compute the center-of-mass cross section

$$
\frac{d \sigma_{\gamma \gamma}}{d \Omega}=\frac{1}{4 \pi^{2}}\left(48 C_{1}^{2}+40 C_{1} C_{2}+11 C_{2}^{2}\right) \frac{E^{6}}{m_{e}^{8}} \times\left(3+\cos ^{2} \theta\right)^{2} .
$$

4. Compute the matching for the coefficients $C_{1}$ and $C_{2}$ along the lines sketched in the lecture. Using the result $C_{1}=-\alpha^{2} / 36$ and $C_{2}=7 \alpha^{2} / 90$, you should recover the known cross section

$$
\frac{d \sigma_{\gamma \gamma}}{d \Omega}=139\left(\frac{\alpha^{2}}{180 \pi}\right)^{2}\left(3+\cos ^{2} \theta\right)^{2} \frac{E^{6}}{m_{e}^{8}}
$$

