Solutions EFT, Serie 3
1.) , 3.) see Mothemetice hotebook / PDF feynmen-rule - Enver_ Heisenberg int
4.) notebook

Enler-Heisentery-Matching.n6
2.) let's firot consider $\gamma \gamma \rightarrow \gamma \gamma$

$$
\sigma \sim\left|\sim_{\frac{c_{1,2}}{m_{e}^{4}}}^{\sim}\right|^{2} \sim \frac{\alpha^{4}}{m_{e}^{8}} \cdot E_{\gamma^{2}}^{n} \cdot f(\theta)
$$

Dimention of σ is area, so $\sigma \sim \frac{1}{E^{2}}$
simensionol anelysirs yields $n=6$

$$
\sigma=\alpha^{4} \frac{E_{\gamma}^{6}}{m_{e}^{8}} f(\theta)
$$

The expricit calculetions in 3.) \& 4.)
yield $f(\theta)=139\left(\frac{1}{180 \pi}\right)^{2}\left(3+\cos ^{2} \theta\right)^{2}$

Diagrams for $\gamma \gamma \rightarrow \gamma \gamma \gamma \gamma$ include

$$
\begin{align*}
& \sigma \sim \mid\left.\right|^{2} \\
& \sim\left(\frac{1}{m^{8}}\right)^{2} E_{\gamma}^{n} \sim \alpha^{8} \frac{E_{\gamma}^{14}}{m^{16}} \quad(A) \tag{A}
\end{align*}
$$

but perhaps we can use a higher-oroler Lagrangian to directly produce pr \rightarrow pips?

$$
\left.\sigma \sim\right|^{\uparrow}+\left.\cdots\right|^{2}(B)
$$

$$
\text { e.g. } \Delta \mathcal{L}=\frac{C_{6}}{m_{e}^{8}}\left(F_{\mu \nu} F^{\mu \nu}\right)^{3}
$$

we see that these contributions enter of the sone orover as the ones is category (A).
let us cleo count power of α

$$
\sim \underbrace{}_{n} \sim \underbrace{2}_{n} \sim \alpha^{3}
$$

\rightarrow This is less suppressed then (A)!

$$
\rightarrow \quad \sigma \sim \alpha^{6} \frac{E_{\gamma}^{14}}{m_{e}^{16}}
$$

