Solutions Exercise 2
la.) We will analyze all integretion-7y-part identities of the form

$$
\begin{aligned}
\int d^{d} x \partial_{\mu} f(\phi)= & 0 \\
& \xlongequal{\uparrow} \text { boundary tern } \\
& \& \phi \rightarrow 0 \text { for } x_{\mu} \rightarrow \infty
\end{aligned}
$$

Short-hend notation:

$$
\partial_{\mu} f(p) \stackrel{n}{=} 0
$$

Using these identities allows us to reduce the umber of terms in Left.

Example: Kinetic term

$$
\begin{aligned}
& 0 \cong \partial_{\mu}\left(\phi \partial^{\mu} \phi\right) \cong \partial_{\mu} \phi \partial^{\alpha} \psi+\phi \square \phi \\
&
\end{aligned} \begin{aligned}
& \partial_{\mu} \phi \partial^{\mu} \phi \triangleq-\phi \Delta \phi
\end{aligned}
$$

the only term with two fills and two derivatives
\rightarrow only one of the two terms needs to de incluoled in $\&$.
we how repeat the procedure for the dimension six operators suppressed by $1 / M^{2}$. At $d=6$, we hove:
i.) Four derivatives s two fields
ii.) Two deivotives, four fields ii.) No derivatives, six fields
i.) Four derivatives, two fields

Possible terms: $\phi \square^{2} \phi=O_{1}$

$$
\begin{aligned}
\partial_{\mu} \phi \partial^{\mu} \Delta \phi & =O_{2} \\
\Delta \phi \square \phi & =O_{3} \\
\partial_{\mu} \partial_{\nu} \phi \partial^{\mu} \partial^{v} \phi & =O_{4}
\end{aligned}
$$

1 densities.

$$
\begin{aligned}
0 & \hat{=} \partial^{\mu}\left(\partial_{\mu} \phi D \phi\right)
\end{aligned} \begin{aligned}
& \Delta \phi D \phi+\partial_{\mu} \phi \partial^{\mu} D \phi \\
& =O_{3}+O_{2} \\
& O_{3} \hat{=}-O_{2}
\end{aligned}
$$

$$
\begin{aligned}
0 \hat{=} \partial^{r}\left(\phi \partial_{\mu} D \phi\right) & =\partial^{n} \phi \partial_{\mu} D \phi+\phi D^{2} \phi \\
& =O_{2}+O_{1} \\
& \Rightarrow O_{2} \hat{=}-O_{1}
\end{aligned}
$$

$$
\begin{aligned}
0 & \triangleq \partial_{\mu}\left(\partial_{\nu} \phi \partial^{\mu} \partial^{\nu} \phi\right)=O_{4}+O_{2} \\
& \rightarrow O_{4} \cong-O_{2}
\end{aligned}
$$

Therefore:

$$
O_{4} \cong O_{3} \hat{=}-O_{2} \hat{\cong} \hat{0_{1}}
$$

\rightarrow Only one independent operator! Can choose O_{1}.
ii.) Two derivatives, four fields

$$
\partial_{p} \phi^{n}=(n-1) \phi^{n-1} \partial_{\mu} \phi
$$

\rightarrow Sufficient to consider derivatives on a single fields

Possible terms: $\left(\partial_{\mu} \phi\right)\left(\partial^{n} \phi\right) \phi^{2}=0_{1}$

$$
(a \phi) \phi^{3}=O_{2}
$$

$$
\begin{aligned}
& \partial_{\mu}\left(\partial_{\mu} \phi \varphi^{3}\right)(\square \phi) \cdot \phi^{3} \\
&+\partial_{\mu} \phi \partial_{\mu} \phi^{3} \\
&=(\Delta \phi) \phi^{3} \\
&+3 \partial_{\mu}\left(\phi \partial^{\mu} \phi \phi^{2}\right. \\
&= O_{2}+3 O_{1} \\
& \rightarrow \quad O_{1} \hat{=}-\frac{1}{3} O_{2}
\end{aligned}
$$

Only single operator is needed, we can choose O_{2}. In the lecture, we

$$
\text { used } \begin{aligned}
\phi^{2} \square \phi^{2} & \hat{} \\
& =2 \phi^{2} \partial_{\mu}\left(2 \phi \partial_{\mu} \phi \partial^{2} \phi+2 \phi^{3} \Delta \phi\right. \\
& =2 O_{1}+2 O_{2} \\
& =\frac{4}{3} O_{2}
\end{aligned}
$$

ui.) Six fiebls
only possidle term is ϕ^{6}.

$$
\begin{aligned}
& \rightarrow \mathcal{L}=\frac{1}{2} \partial_{m} \phi \partial^{\mu} \phi-\frac{m^{2}}{2} \phi^{2}-\frac{\tilde{\lambda}}{4!} \phi^{4} \\
& -\frac{C_{2,4}}{2!M^{2}} \phi D^{2} \phi-\frac{C_{4, L}}{4!M^{2}} \phi^{2} \Delta \phi^{2}-\frac{C_{6,0}}{6!M^{2}} \phi^{6}
\end{aligned}
$$

is the moot generel Leffe, up to $^{\text {un }}$ dimension 8 terus.
16.) Field redefinition

$$
\phi_{L}=\phi_{L}+\frac{\alpha}{M^{2}} \square \phi_{L}+\frac{\beta}{M^{2}} \phi_{L}^{3}
$$

only need to plus this into

$$
\mathcal{L}_{\text {eft }}^{(n)}=+\frac{1}{2} \partial_{\mu} \varphi_{L} \partial^{n} \phi_{L}-\frac{m^{2}}{2} \phi_{L}^{2}-\frac{\lambda}{4!} \phi_{L}^{4}
$$

since contributions from other terms are suppressed by $1 / M^{4}$ or more.

$$
\begin{aligned}
\mathcal{L e f f ~} & \rightarrow \mathcal{L}_{\text {eff }}+\partial_{\mu} \phi_{L} \partial^{m}\left(\frac{\alpha}{M^{2}} a \phi_{L}+\frac{\beta}{M^{2}} \phi_{L}^{3}\right) \\
& \left.-\tilde{m}^{2} \phi_{L} \backslash \frac{\alpha}{M^{2}} \Delta \phi_{L}+\frac{\beta}{M^{2}} \phi_{L}^{3}\right) \\
& -\frac{\tilde{\lambda}}{3!} \phi_{L}^{3}\left(\frac{\alpha}{M^{2}} \Delta \phi_{L}+\frac{\beta}{M^{2}} \phi_{L}^{3}\right)+0\left(\frac{1}{M^{4}}\right)
\end{aligned}
$$

Now we can used the identities from 10.) to bring all terms into the same form as the
ones in the original tefl.

$$
\begin{aligned}
& \mathcal{L}_{\text {eff }}=L_{\text {eff }}+\frac{\tilde{n}^{2} \alpha}{M^{2}} \partial_{\mu} \phi_{L} \partial^{2} \phi_{L}-\frac{\tilde{n}^{2} \beta}{M^{2}} \phi_{L}^{4} \\
& -\frac{\alpha}{M^{2}} \phi_{L} D^{2} \phi_{L}-\frac{\beta}{2 M^{2}} \phi_{L}^{2} D \phi_{L}^{2} \\
& -\frac{\lambda}{3!} \frac{3}{4} \frac{\alpha}{M^{2}} \phi_{L}^{2} D \phi_{L}^{2}-\frac{\tilde{\lambda}}{3!} \frac{\beta}{M^{2}} \phi_{L}^{6} \\
& +O\left(\frac{1}{M^{4}}\right)
\end{aligned}
$$

After the treneformation, the coefficient of $\phi_{L} D^{2} \phi_{-}$is

$$
\frac{1}{2 M^{2}}\left(-C_{2,4}-2 \alpha\right)
$$

so choosing $\alpha=-C_{2,4} / 2$ eliminates
this term. The coefficient of $\phi^{2} \square \phi^{2}$ is:

$$
\frac{1}{4!M^{2}}\left(-C_{\psi, 2}-3 \tilde{\lambda} \alpha-\frac{4!}{2} \beta\right)
$$

choice $\beta=-\frac{2}{4!}\left(C_{4,2}+3 \tilde{\lambda} \alpha\right)$

$$
=-\frac{1}{12}\left(c_{4,2}-\frac{3}{2} \tilde{\lambda} c_{2,4}\right)
$$

eliminates this term.
The remaining terms from the field redefinition can be absorbed into redefinitions of the parameters.

not present if these terms wee eliminated...

Note: we only draw connected IPI (one-particle irredncitlo) cliegrams.

Full theory

ld.) EFT (who $C_{2,4}, C_{4,2}$!)

Full theory

2.) To get gange invarauls realts, one can work with the field strength tensor and derivatives of it.

I Or equivilently, with prodmets of coveriank deivatives.)

$$
F_{\mu v}=\partial_{\mu} A_{v}-\partial_{v} A_{r} ;\left[F_{\mu v}\right]=2
$$

EOM: $\quad \partial^{r} F_{\mu v}=j_{v}=0$ in ous coge.
a.) only $a=4$ opertor is

$$
\bar{T}^{\mu v} F_{\mu v}
$$

b.) condidates at $d=6$:

$$
O_{1}=F^{\mu} F_{\rho}^{v} F_{\mu}^{P}=0
$$

(vanishing reflects C-parity $A_{H} \rightarrow-A_{\mu}$)
Because of the EOM, terms of the form $\partial_{r} F^{r}$, etc. can all be eliminated.

This leaves

$$
\begin{aligned}
& O_{2}=\partial_{p} F_{\mu \nu} \partial^{p} F^{\mu \nu} \\
& O_{3}=F_{\mu v} \square F^{\mu \nu} \hat{=}-O_{2}
\end{aligned}
$$

pecoti identity: $\left[D_{\rho},\left(D_{\mu}, D_{\nu}\right]\right]+$ cyclic $=0$

$$
\begin{aligned}
& \partial_{\rho} F_{\mu \nu}+\partial_{\mu} F_{v \rho}+\partial_{v} F_{p r} \\
& \rightarrow O_{2}=\left(-\partial_{\mu} F_{v p}-\partial_{v} F_{p r}\right) \partial^{\rho} F^{\mu \nu} \\
& \hat{=} 0 \text { ! }
\end{aligned}
$$

\rightarrow No physical $d=6$ operctors!
3.) we can either discuss total deivetives or monenotum conservation
a.) In monentur space: two fields with $p_{1}+p_{2}=0 \rightarrow p_{2}=-p_{1}$.

Invariatt :

$$
p_{1}^{2},\left(p_{1}^{2}\right)^{2},\left(p_{1}^{2}\right)^{4}, \ldots
$$

\rightarrow only a single opector.

Porition opsce:

$$
\begin{aligned}
& \left(\partial_{\mu}, \partial_{\mu_{2}} \ldots \partial_{\mu}, b\right)\left(\partial_{\mu} \cdot \ldots \cdot \partial_{\mu-1} \phi\right) \\
= & (-1)^{n} \phi \square^{n} \phi
\end{aligned}
$$

6.) Moventum space, n fields $(i, j=1, \ldots n)$

Symmetric quodratic inverient:

$$
O_{1}=\sum_{i} P_{i}^{2} ; O_{2}=\sum_{i \neq j} P_{i} \cdot p_{j}
$$

Momentum conservetion:

$$
O_{2}=\sum_{i} p_{i} \cdot\left(-p_{i}\right)=-O_{1}
$$

\rightarrow only a single invariant O_{1}
c.) Quertic invarients

$$
\begin{aligned}
O_{1} & =\sum_{i}\left(p_{i}^{2}\right)^{2} \\
O_{2} & =\sum_{i \neq j} p_{i}^{2} p_{j}^{2} \\
O_{3} & =\sum_{i} \sum_{j \neq k} p_{i}^{2} p_{j} \cdot p_{2}
\end{aligned}=-\sum_{i} \sum_{j} p_{i}^{2} p_{j}^{2}, ~=-O_{1}-O_{2} . l y
$$

$$
\begin{aligned}
& O_{4}=\sum_{i \neq j}\left(p_{i} \cdot p_{j}\right)^{2} \\
& O_{5}=\sum_{i \neq j} \sum_{k \neq l}\left(p_{i} \cdot p_{j}\right)\left(p_{k} \cdot p_{l}\right) \\
& \underline{\left.\left(\sum_{i} p_{i}^{2}\right) \mid \sum_{k} p_{j}^{2}\right)=o_{1}+o_{2}} \begin{aligned}
O_{6} & =\sum_{i \neq j \neq k \neq l} p_{i} \cdot p_{j} p_{k} \cdot p_{l} \\
& =\sum_{i \neq j \neq 4} p_{i} \cdot p_{i}\left(-p_{k} \cdot p_{i}-p_{k} \cdot p_{j}\right. \\
= & \sum_{i \neq j} p_{i} \cdot p_{j}\left(p_{i}^{2}+p_{i} p_{j}\right. \\
& -\sum_{k} p_{k}^{2} \sum_{i} p_{i}^{2} \\
& \left.+p_{i} \cdot p_{j}+p_{j}^{2}\right) \\
=2 \sum_{i}\left(p_{i}^{2}\right)^{2} & +2 \sum_{i \neq j}\left(p_{i} p_{j}\right)^{2}-\left(\sum_{i} p_{i}^{2}\right)\left(\sum_{i} p_{j}^{2}\right)
\end{aligned} \\
&
\end{aligned}
$$

\rightarrow Everything linear in a momentum col te eliminated using monertuw conorvetion
$\leadsto 1+$ appears to me that O_{1}, O_{2}, O_{4} are the only independent structures.

