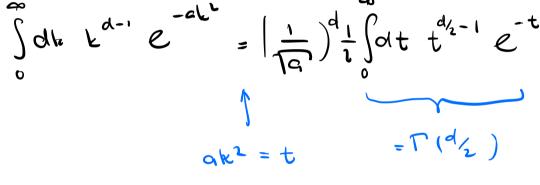
1.) Active is dimensionless. From Einstie terms out reads off $\int d^{4} \times (\partial_{\mu} b)^{2} \longrightarrow [b] = \frac{d-2}{2}$ $\int d^{4} \times (\partial_{\mu} b)^{2} \longrightarrow [b] = \frac{d-1}{2}$ $\int d^{4} \times \overline{\psi} \beta \psi \longrightarrow [b] = \frac{d-1}{2}$ $\int d^{4} \times (\partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu})^{2} \longrightarrow [A_{\mu}] = \frac{d-2}{2}$ Note: $(D_{\mu} f) = (\partial_{\mu} - ieA_{\mu} f) = 1$ $\rightarrow [e] = \frac{\psi - d}{2}$ operator dimension:

0	d	d = 2	0=3	d=4
1	3(2-2)	0	3	6
٢	01-1	١	2	3
3	$\frac{3d}{2}-2$	l	52	4
4	2d - 2	2	4	6
5	d	2	3	4
6	3 <u>d</u> - 1 2	2	7/2	5

irrelevent relevent merginel

2.) Carrying out the integrals in the exercise, we get $\left(\int_{-\infty}^{\infty} dk \ e^{-ek^{2}}\right)^{d} = \left(\int_{-\infty}^{\infty}\right)^{d}$



2akdk = dt

3.) we compute
$$\Gamma_2$$
, see (8.6) in script.

The two-point function is given by

$$G(p) = - + Q + Q + ...$$

Let's define
$$\Sigma cs:$$

- $\Sigma =$

Then

$$G(p) = - + - (-\Sigma) - + - (-\Sigma) - (-\Sigma) -$$

$$= \frac{1}{p^{2} + m^{2}} + \frac{1}{p^{2} + m^{2}} (-\Sigma) \frac{1}{p^{2} + m^{2}} + \cdots$$

$$= \frac{1}{p^{2} + m^{2}} + \Sigma$$

Trunceted Green's function

$$Trunceted Green's function
$$Trunceted Green's function
= P^{2} + m^{2} + \Sigma$$
To compare the diagram we used the
vertex

$$2\int d^{\mu}x \quad \frac{\varphi_{L}^{\mu}\varphi_{H}^{\mu}}{2!\,2!} \rightarrow Feynmen rule : -\lambda$$

$$= \sum_{l=1}^{2} -\frac{\lambda}{2}\int_{(2\pi)^{d}} \frac{1}{k^{2}+m^{2}}$$

$$= -\frac{\lambda}{2} \quad \frac{2\pi^{2}}{(2\pi)^{4}} \quad \int_{\Lambda_{b}}^{\Lambda_{b}} clk \quad k^{3} \quad \frac{1}{k^{2}+m^{2}}$$

$$= -\frac{\lambda}{1k\pi^{2}} \quad \int_{\Lambda_{b}}^{\Lambda_{b}} clk \quad k^{3} \quad \frac{1}{k^{2}+m^{2}}$$$$

For the quadratic action in Section 2.2.1. We have rescaled $k \rightarrow bk' \quad j \quad x \rightarrow x'/L$ and $\tilde{\varphi}(k) \rightarrow \tilde{\varphi}'(k') \cdot b^{-\frac{d+n}{2}}$ to get bede an action with the original cutoff. We can do the same have, which would again lead to $m^2 \rightarrow m^2/L$, see (2.35).