Effective Field Theories

http://www.becher.itp.unibe.ch/eft24/

Spring Semester 2024

Thomas Becher

Tools for QFT computations

Expansion in the interaction strength: perturbation theory

Expansion in scale ratios: Effective Field Theories

Numerical methods: lattice simulations Toy models: solvable models SUSY theories AdS/CFT

Benefits of EFTs

- Expansion in scale ratios simplifies computations
- Factorization of physics at different energy scales
 - Separate perturbative from non-perturbative physics
 - Dimensional analysis
 - Perturbation theory works. (It cannot be applied in multi-scale problems due to large logarithms.)

• Symmetries

- emergent: heavy-quark symmetry
- approximate: chiral symmetry
- General framework also for cases where the full theory is not known, or cannot be used for computations

Wilsonian vs. Continuum EFT

- Wilsonian EFT integrates out high-energy physics above some cutoff exactly, using path integral
 - top down approach, difficult in practice
 - works with hard cutoffs
 - provides physical picture of renormalization
- Continuum EFT
 - write down the most general low energy $L_{\mbox{\scriptsize eff}}$
 - determine coefficients of terms in Leff by matching
 - usually: dimensional regularization instead of hard cutoff

Traditional low energy EFTs

The effective theory is a standard relativistic quantum field theory, but includes non-renormalizable operators.

- higher-dim operators suppressed at low energies
- renormalizable up to a given power

Typically, such EFTs are obtained after integrating out heavy particles.

- Effective Lagrangian depends on light fields
- Higher-dim operators are induced from integrating out heavy degrees of freedom

Fermi theory

A tower of EFTS

effective theory	full theory	energy scale Λ	fields in L _{eff}
Fermi theory (QED+QCD+eff. weak)	SM	<i>M</i> _W ≈ 80 GeV	Ι, ν, q, g, γ

A tower of EFTS

effective theory	full theory	energy scale Λ	fields in L _{eff}
Fermi theory (QED+QCD+eff. weak)	SM	<i>M</i> _W ≈ 80 GeV	l, ν, q, g, γ
CHPT + QED	QCD + QED + eff. weak	<i>m</i> _ρ ≈ 1 GeV	π, Κ, γ,

A tower of EFTS

effective theory	full theory	energy scale Λ	fields in L _{eff}	
SM	?	$\Lambda_{new} = ?$	Ι, ν, q, g, γ, Η, W, Ζ	
Fermi theory (QED+QCD+eff. weak)	SM	<i>M</i> _W ≈ 80 GeV	Ι, ν, q, g, γ	
CHPT + QED	QCD + QED + eff. weak	$m_{ ho} \approx 1 \text{ GeV}$	p, n, π, K, γ,	

Modern EFTs: e.g. NRQED

Many examples of scale hierarchies in QFT in which the lowenergy part does not consist of light particles with low momentum.

e.g. non-relativistic problems $E_{\rm kin} \ll |\vec{p}| \ll m$

- Cannot simply integrate out *e* or *p*.
- Different components of the momentum scale differently

Jet physics at the LHC

Many scale hierarchies!

 $\sqrt{s} \gg p_{\rm Jet}^T \gg M_{\rm Jet} \gg E_{\rm out} \gg m_{\rm proton} \sim \Lambda_{\rm QCD}$

→ Soft-Collinear Effective Theory (SCET)

Modern complications

- EFT is tailored to physics at hand: reference vectors,...
- Particles may be described by several fields (modes)
 - Two kinds of photon fields in NRQED: soft and ultrasoft
 - Various types of soft and collinear particles in SCET
- Not all momentum components are small: non-localities along the directions of large momenta
 - parton-distribution functions
 - Coulomb potential

Outline

1 Introduction

2	The	Wilsonian effective action $[1, 2]$
	2.1	Integrating out high-energy modes
	2.2	Classification of operators
	2.3	Renormalization group
3	Con	tinuum effective theory [3–5]
	3.1	Tree-level matching calculations
	3.2	Field redefinitions
	3.3	Matching at higher orders
	3.4	Power counting
	3.5	Renormalization group improved perturbation theory $\ldots \ldots \ldots \ldots \ldots \ldots$
4	The	Standard Model at low energies
	4.1	Euler Heisenberg Theory $[6]$
	4.2	Decoupling of heavy flavors
	4.3	Effective weak Hamiltonian (Fermi Theory) [7, 8]
	4.4	Chiral Perturbation Theory [9–11]

5	Hea 5.1 5.2	vy quarks and non-relativistic systemsHeavy Quark Effective Theory (HQET) [8, 12]Nonrelativistic Effective Theories [4, 13]5.2.1Nonrelativistic QCD (NRQCD)5.2.2Potential Nonrelativistic QCD (pNRQCD) [14–16]
6	Ene	rgetic particles and jet physics
	6.1	Method of regions $[17]$
	6.2	Soft-Collinear Effective Theory [18, 19]
7	Furt	ther examples
	7.1	Fermi liquids and the BCS theory of superconductivity [1, 20]
	7.2	The Standard Model of Particle Physics [3, 23]
	7.3	Nucleon-nucleon interaction EFTs [20]
	7.4	Symanzik Effective Theory [21, 22]
	7.5	General relativity for extended objects [24]
	7.6	Thermal effective field theories $[25]$
		7.6.1 Dimensionally reduced effective field theory for hot QCD
		7.6.2 Hard Thermal Loops effective theory