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Thomas Becher and Martin Hoferichter
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Sidlerstrasse 5, 3012 Bern, Switzerland

Abstract

This lecture provides an introduction to the framework of low-energy effective field the-
ories. After developing the basic concepts, the method is used to analyze electromagnetic,
weak, and strong interactions at low energies. The course is intended for master or graduate
students who have taken a first course in quantum field theory.

[The present script will be further extended and adapted as the course pro-
gresses. Please send suggestions and corrections to thomas.becher@unibe.ch.]
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Preface

Effective field theory was first developed in the context of the strong interactions [1-3], but
has since become an important tool in all of particle and nuclear physics (and beyond). It
is based on ideas related to the Wilsonian renormalization group [4], which describes the
evolution of operators as a function of the renormalization scale. In the first two chapters,
we will review its basics and introduce the concepts and techniques of effective field theory
using the example of scalar fields. The later chapters then address applications, mainly to
the low-energy properties of the Standard Model.

These notes were compiled for the course “Effective Field Theory” by Thomas Becher first
delivered at the University of Bern in 2010 and 2015, and set in KTEXby Jonas Haldemann.
The present version has been revised and corrected by Martin Hoferichter for a course in 2021.
The material covered is largely based on Refs. [5-8], to which we also refer for further reading.
Of course, we take full responsibility for all typos and mistakes introduced or overlooked by
us.



1. Introduction

Low-energy effective quantum field theories — or effective field theories (EFTs), for short —
are an important, widely used tool in particle physics and beyond. An effective theory, is
a theory which only describes the physics below some energy scale A, as opposed to a full
theory, which should be valid up to arbitrary high energies.

What are examples of effective theories? Every theory we know! For example, no one in his
right mind believes that the Standard Model (SM) of particle physics is valid up to arbitrarily
high energies. Quantum Chromodynamics (QCD), the theory of the strong interaction, by
itself, would be consistent as a theory valid up to arbitrarily high energies since it has a special
property called asymptotic freedom which makes it very well-behaved at asymptotically large
energies. However, a detailed theoretical analysis of the rest of the SM strongly suggests that
while it could be valid up to a very high scale A, much higher than what is currently accessible
in experiments, it ceases to make sense as a theory beyond this energy. We will discuss this
point later in the lecture. On top of this, there are also many physics reasons why the SM
should be replaced by a different theory at high energies (a need for additional sources of CP
violation, dark matter, quantum gravity, ...). These arguments show that the SM must be
viewed as an effective theory, even though we don’t know at what scale A it breaks down.

Once one admits that a theory is only valid up to some scale A, it makes sense to perform an
expansion in the ratio A = E//A, where E is the physical energy scale one is interested in and A
the scale at which the theory breaks down. Such expansions often greatly simplify the physics,
similar to the expansion in small coupling constants which is the basis for perturbation theory,
and enable many predictions and computations which would be impossible in the full theory,
even if it is known. All computations of physical observables in the SM rely on effective field
theory techniques, although this is not always explicitly spelled out in the literature.

Expansions in scale ratios

Expansions in scale ratios are also commonly used in classical physics. For example, we often
deal with non-relativistic systems, where the three momentum (in the appropriate frame) is
much smaller than the mass of a particle, |7| < m.! In this case one can expand

P07
E:\/m2+p2:m+%—8m3 +.... (1.1)

The expansion to second order is used in classical mechanics, but one can systematically add
higher-order terms to account for relativistic corrections and achieve any desired precision,
as long as |p| < m. However, as |p| ~ m, the expansion starts to break down. One can thus
view non-relativistic mechanics as an effective theory of relativistic mechanics, which would
be the full, fundamental theory. The same limit is also the basis for non-relativistic quantum
mechanics. For example, in the hydrogen atom, (p?) ~ (m a)?, where o ~ 1/137 is the fine
structure constant and the higher order terms in (1.1) induce small, calculable corrections

!Throughout we use natural units & = ¢ = 1.
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Figure 1.1.: Left: Double-well potential. Right: Weak decay of a muon. The wiggly line
indicates the W-boson which mediates the decay.

to the spectrum. Indeed, quantum mechanics (QM) should be viewed as the effective theory
of QED, which in turn is an effective theory of the SM. Hence, the computation of the
hydrogen energy levels involves a tower of effective theories. One starts first with the SM,
then transitions to QED, an effective theory that only includes light particles with masses
m <K A ~my,mz,.... In the second step, one takes the non-relativistic limit to end up with
QM. The systematic construction of the non-relativistic theory is actually quite challenging. It
is called non-relativistic QED (NRQED) and contains the quantum mechanics of the electron
together with quantized photons, so it is still a quantum field theory.

As a second illustrative, classical example, consider the electromagnetic potential ¢(7) of
a static charge distribution p(}_f) which is concentrated inside a small region |R| < Ry. If
we consider the potential for r = || > Ry, we can expand in the ratio A ~ r > Ry. This
expansion takes the form

P(ﬁ) Po  PiTi | PijTil
Ameod(r) = /d3R|F—1§| =+t ]27’5 L. (1.2)

This is called the multi-pole expansion and the coefficients pg, p;, and p;; are referred to

as monopole-, dipole- and quadrupole-moments of the charge distribution p(R). Since it is
performed on the level of the integrand, we can view it as a distribution expansion

_ _ B | .
p(R) = po 0 (R) — p; 0:6®) (R) + o Pis 00,6 (R) + ... (1.3)

of the charge distribution, i.e. the systematic approximation of the charge distribution of a
small object as a general local function (more precisely distribution). The hydrogen atom is
again a good example of a case where this expansion is relevant. Even if we treat the proton
as static (and classical), it has a very complicated charge distribution since it is a complicated
bound state of quarks and gluons. However, the size of the proton is many orders of magnitude
smaller than the size of a hydrogen atom and we can therefore treat it as a point source using
(1.3).



Classical versus quantum theory

There is an interesting difference between classical and quantum mechanics when it comes
to low-energy effective theories. In a classical theory, the states with high energy can never
be reached when working at low energies. If there is a potential barrier with height A > F
classical particles will never cross it. As an example, if a classical particle is subjected to the
potential shown on the left-hand side of Figure 1.1, it cannot cross the barrier if its energy is
below it.

In a quantum theory, on the other hand, particles can tunnel through potential barriers,
such as the one shown in Figure 1.1. Quantum particles are sensitive to the presence of
high-energy states and this needs to be accounted for in the low-energy effective theory.
One place where this becomes manifest is when doing perturbation theory for a Hamiltonian
H = HY + \H'. Expanding the energy values as

E,=E)+\E} + NE2 +-- -, (1.4)

the second-order term gets contributions from unperturbed states with any energy E,,

| H | ;
B =, BE= 3 gt Hiyp = WO 00) . (15)
m#n

A concrete example of this effect in quantum field theory is the weak decay of a muon
p~ — vyue V. This first occurs in second order in perturbation theory and the associated
Feynman diagram is shown on the right-hand side of Figure 1.1. The mass of the muon is

= 106 MeV, much lower than the mass of the W-boson My = 80.4 GeV, so there is
no actual W-boson produced in the decay. The W-boson is called a wirtual particle. To
account for the decay in the low energy theory, one has to introduce an explicit four-fermion
interaction, see the right-hand side of Figure 1.2. In fact, Fermi theory was introduced in
1934 and is thus much older than the SM. To obtain the Fermi interaction from the SM result,
one expands the propagator of the intermediate W-boson as

1 1 q>
=— 1 ) 1.6
g~ g (g * ) o

Since ¢? = (pu— p,,ﬂ)2 < M‘%V the higher order terms in the expansion only have a very small
effect. For precision calculations of the weak decay, one includes the first correction term.

The expansion (1.6) changes the high-energy behavior of the theory. While the original
propagator falls off for ¢> — oo this is no longer true for the expanded one. One computing
higher-order terms in perturbation theory in the effective theory, the changed high-energy
behavior leads to additional ultra-violet (UV) divergences not present in the full theory.
These divergences arise because in expressions such as E2 in (1.5), the sum (or integral for
a continuum of states) runs up to infinitely large energies. To obtain meaningful results, one
has to introduce an ultraviolet cutoff Ayy to regularize the effective theory.

Such UV divergences are always present in quantum field theories, but they arise already
in ordinary quantum mechanics, if expansions such as (1.1) are (1.2) performed since the
operators are singular at high energies or, equivalently, low energies. Of course, the phys-
ical results should be independent of Ayy. This can be achieved through a process called
renormalization: In the presence of the cutoff, also the coupling constants of the theory will
depend on Ayy and this dependence can cancel the one encountered the computations.
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Figure 1.2.: Description of the weak decay in Fermi theory, which is also known as Weak Ef-
fective Theory (WET). Fermi theory includes an explicit four-fermion interaction
to describe the decay (shown on the right side), while it proceeds through the
exchange of a W-boson in the SM (left side).

EFTs provide a modern, physical understanding of renormalization. These theories are
only valid up to a finite energy scale A and it therefore makes sense to define them with
an ultraviolet cutoff Ayy ~ A. At the same time, low-energy physics should not depend on
the details of physics at arbitrarily high scales, so it should be possible to arrive at physical
results that are independent of Ayy at the end of the day.

Wilsonian versus continuum effective theories

There are two ways of constructing effective theories. The first one is due to Wilson. In
this approach, one obtains the low-energy theory by explicitly integrating out high-energy
physics above a scale A in the path integral of the full theory. This approach is very useful to
discuss many of the conceptual issues in the construction of effective theories. In particular,
we will use it to classify operators in the effective theory. However, explicitly integrating out
all physics above some scale is typically harder than solving the full path integral and it is
therefore difficult to use this top-down approach in practice.

A much easier, bottom-up way is to construct the effective Lagrangian including all terms
which are relevant at the necessary accuracy. One introduces the terms with arbitrary cou-
plings and then determines the couplings with a matching calculation. One computes the
same observable in the full and effective theory and then adjusts the couplings in the EFT to
reproduce the full theory results to the desired accuracy. This approach is called continuum
effective theory because one treats the EFT as a standard quantum field theory and typically
works with dimensional regularization instead of a momentum or lattice cutoff.

In our lecture, we will first discuss the Wilsonian approach, but will then use continuum
effective theory for all practical computations.

Why effective theories?

One may wonder why it is necessary or interesting to construct effective theories in cases
where the full theory is known. For example, why use Fermi theory now that we have the
SM? There are many reasons why effective theories are useful:

e Simplification. Expanding in scale ratios A < 1 often drastically simplifies a theory.
Computing Feynman diagrams in WET is much simpler than in the full theory (and
there are typically fewer diagrams).



e Factorization. Effective theory allows one to separate the physics associated with
different scales. This is especially useful in QCD, where the high-energy physics can be
computed in perturbation theory, while the low-energy part typically requires a non-
perturbative treatment.

e Perturbation theory. In problems with large scale hierarchies, higher-order terms
in the coupling constant g are enhanced by logarithms of the scale ratio A, i.e. the
perturbative corrections involve terms g™ In" A\, where normally m < n.2 The large
logarithms of A can significantly enhance the higher-order corrections and overwhelm
the suppression by the coupling, even at weak coupling. These logarithmic terms can
be summed to all orders using the renormalization group in the EFT.

e Approximate and emergent symmetries. In some cases, the effective theory in-
volves additional symmetries at leading power in A\. Examples are the so-called heavy
quark symmetry and the chiral symmetry. Using EFTs; the consequences of these
approximate symmetries can be systematically studied.

On top of this, effective field theory provides a systematic framework to parameterize the
effects of unknown physics at higher energies, which is relevant for searches of physics beyond
the SM.

2In some more complex effective theories, such as Soft-Collinear Effective Theory, double logarithms arise
leading to m < 2n.



2. The Wilsonian effective action

Consider a field theory with characteristic large energy scale M, and suppose we are only
interested in physics at low energies £ < M. This is the physical situation effective field
theories are designed to analyze. The full theory is defined in terms of a path integral.
Everything we wish to know can be obtained from calculating the expectation values

O1T (9(a) - )} 0) = [ DO D(a1) ... o) (21)

where the integration measure is

[ o= 1 [aota) o [Do- Il [ dotw). (2.2)

and

Z = / Dpe'3(@), (2.3)
To obtain the low-energy effective action, we split the field
¢ =L+ ém, /D¢ = /D¢L/D¢H7 (2.4)

where ¢y contains all Fourier modes with w > A and ¢, the low-energy modes w < A. Since
we are only interested in low-energy physics, we only need to consider correlation functions

O] T {or(x1) ... oL(zn)}|0) = ;/D%/Wm SOLtom) ¢ (1) ... pr(zn) (2.5)

eiSaer)

= 1/d(;5L €iSA(¢L)¢L(x1) e ¢L($n) (2.6)

Z

Sa(¢r) is called the “Wilsonian effective action” and we have chosen A < M to integrate out
the physics associated with M. Sa(¢r) is non-local on scales Azt 2> % (i.e., the Lagrangian
is not just a polynomial of the fields or their derivatives evaluated at a single point in space-
time), because high-energy fluctuations have been integrated out. As a final step, one expands
the non-local action as a series of local operators. This expansion is possible because E < A
and is analogous to the multipole expansion in (1.2). We will encounter concrete examples
below. The result has the form

Sa(dn) = / i £ (), (2.7)
L (x) = ZgiOi(I), (2.8)
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where the object Ciﬁ is called the effective Lagrangian. It is an infinite sum over local
operators O; allowed by symmetries. The coefficients g; are referred to as Wilson coefficients.
To make this a little more concrete, assume that we integrated out a heavy particle with mass
M. The full theory might contain diagrams such as

b1

! (2.9)
P P2 _M2’ :

D2

where the two incoming lines represent the light field ¢;, and the double line the heavy field
¢m. Since pi,p2 < M, we can expand

1 1 p? 1 4 O .y
v R VRN v I VLA IR vE LR (2.10)

so L5T will contain terms such as ¢1 (z) and 9,¢1(z)0"¢L(x)$2 () etc. In general, it will be
very hard to calculate the coefficients g; and since we ended up with infinitely many terms in
L’/‘S‘\H it is, a priori, unclear how the construction is useful.

The required ordering principle is provided by dimensional analysis. With A = ¢ = 1
[m] = [E] = [z7!] = [t7!] all quantities measured in the same units. Assuming that [g;] = —v;
is the mass dimension of g;, it follows that

gi =CiM™", (2.11)

with a dimensionless coefficient C;. Since the coefficients arose when integrating out the
physics associated with M, it is natural to assume that C; = O(1). Very large, e.g., C; ~ 105,
or very small coefficients, e.g., C; ~ 1075, would call for some explanation in terms of degrees
of freedom not considered. At low energy, the contribution of O; to a dimensionless observable
scales as

E ¥ 0(1) Yi = 0
<M) ={>1 ~<0, (2.12)
<1l >0

and therefore only operators with 7; < 0 are important at low energy.

To derive the mass dimension d; of a given operator, we need to know the mass dimension
of the fields. Assuming that the theory is weakly coupled, the scaling dimension is determined
by the free action

S0= [ (3007 - ) (213)

with [z] = —1, [0,] = +1 ~ E, and using that the action is dimensionless, we find

—1, Qe ¢~EEL (2.14)

6] =2

For an operator with mass dimension §;, we have v, = §; — d, e.g.

11



2. The Wilsonian effective action

0; i scaling of g;
0, 0" ¢ d 0 1
? d—2 -2 M?
o 2d—4| d—4 MA—d
(0.9)%¢* | 2d—2 | d—2 M2
¢° 3d—6|2d—6 MO6—2d

For an operator with n scalar fields and m derivatives we have

6Z-—n<62l—1)+m, vi—(n—2)<‘2i—1>+m—2, (2.15)

so only very few operators have v; < 0 (unless d < 2). The following terminology is commonly
used:

Dimension Importance for £ — 0 Terminology for operator
d0i<d v <0 grows relevant (super-renormalizable)
0i=d v =0 constant marginal (renormalizable)
0i>d v >0 declines irrelevant (non-renormalizable)

This terminology is not optimal. For example, it is interesting to search for the effects
mediated by irrelevant operators, since they provide information on the physics at very high
energies.

Moreover, our discussion makes it clear that renormalizability is sometimes overrated: usu-
ally one avoids irrelevant operators because they render a theory nonrenormalizable. However,
once we admit that a theory is not valid up to infinitely large energies, then it is clear that
it will contain also irrelevant operators. This is not a problem, because their contributions
are suppressed by some large scale M, at which new physics enters. Renormalizable La-
grangians are so successful in describing our low-energy measurements because the relevant
and marginal operators are the most important ones at low energies.

2.1. Relevant and irrelevant operators

Before we proceed further with the renormalization group, we give two examples of irrelevant
operators

e The weak interaction is so weak at low energies because it is mediated by irrelevant
operators such as O = @7, (1 — v5)dv*(1 — v5)v. The fermion field scales as 1) ~ E%,
so § = 6, v = 2. The coeflicient of the operator must be proportional to # Here, the
mass M = My is the mass of the W-boson. From the form of the interaction, Oskar
Klein predicted the existence of massive particles with My, > 60 GeV already in 1938.

o If there are only left-handed neutrinos — as is assumed in the Standard Model — we
cannot write down a dimension-3 fermion mass term (see (2.19) below). However, the
gauge symmetries of the Standard Model allow us to write down a dimension-5 term
gO = gvTHHy with g ~ % (v and H are neutrino and Higgs fields, respectively). After
electroweak symmetry breaking this yields a Majorana mass term for the neutrino, with

my, ~ % (where (H) ~ 174 GeV is the vacuum expectation value of the Higgs field).

12



2.1. Relevant and irrelevant operators

The fact that A ~ 10 GeV can be interpreted as evidence for physics beyond the
Standard Model at these scales.

While irrelevant operators are perfectly natural, super-renormalizable/relevant operators are
problematic. Consider for example the ¢? operator in ¢* theory. In d = 4, we have §; = 2,
~v; = —2, and so we expect that m? ~ A2. Integrating out the quantum fluctuations at large
scales generates a large mass for scalar particles. But this is a contradiction: if m? ~ A? we
should have integrated out the corresponding field ¢. Note that also ¥ ~ E3 is relevant.
This reasoning leads one to conclude that only theories whose mass terms are forbidden by
symmetries are natural. Looking at the Standard Model as an effective theory, this condition
is almost fulfilled:

e gauge bosons do not have mass terms because they are forbidden by gauge symmetry,
ie.
m?(A,)? = m?e*(A,)? (2.16)

is not invariant,

e fermion fields do not have mass terms because left- and right-handed fields

1
ve = 5= )0, (27)
1
Un =1+ %), (218)
have different gauge charges: g is neutral under SU(2)r, ¢ is not, so that a mass
term B ) )
myp = m(PrYL + YrLr) (2.19)

would violate gauge invariance.

Note that the absence of a mass term in Lgy does not imply that the fermions and gauge
bosons are massless. They receive their mass by interacting with the Higgs condensate
YrHyp — 1bp (H) 1R, where (H) is the vacuum expectation value. It is remarkable, that
there is only one relevant operator in the entire Standard Model Lagrangian: the mass term
of the Higgs field y>?HTH.

There are several ways out of this dilemma, but all of them involve physics beyond the
Standard Model around the scale of the Higgs mass:

e Supersymmetry relates fermions and bosons. It can be used to protect scalar masses.
Constructing the theory in such a way that fermion masses are forbidden then implies
that scalar masses are also forbidden as well.

e In technicolor models, there is no fundamental Higgs boson. The Higgs particle is a
bound state of a fermion—antifermion pair, similar to mesons in QCD.

e In little Higgs models, the Higgs boson is a pseudo-Goldstone boson of a spontaneously
broken global symmetry.

Alternatively, the smallness of My could just be due to some accidental cancellation. To
make this more plausible, people often invoke the anthropic principle: “If the Universe (in
our example M) were much different, we would not be here.” There is no concrete evidence
for any of these explanations, and we will not revisit this more philosophical discussion in the
following.

13



2. The Wilsonian effective action

2.2. Renormalization Group

So far, we have considered a situation where we integrated out physics above some character-
istic scale M. It is also interesting to look at what happens if we only integrate out a small
slice A > w > A — JA in which the particle content remains unchanged. In this case, the
form of the action is unchanged, only the coefficients g; change. Repeating the procedure,
one obtains the couplings as a function of the cutoff

{gi(A)} = {gi(A—0A)} — {g:i(A—20A)} — ... (2.20)
The evolution equations p
9i
A% f({gi)) (2.21)

are called renormalization group (RG) equations.!

We will first derive this RG evolution for the trivial but instructive case of a quadratic
action and then analyze the case of ¢* theory. The latter case is interesting because we can
analyze the effect of quantum corrections on marginal operators.

2.2.1. Quadratic action
The general form of a quadratic action is
1
L= §¢(x)[fm27 IxO4cO+...]¢(x), (2.22)

where we have used integration by part to move all derivatives on the first field to the second
one to reduce the number of terms. This is possible since the physical fields should go to zero
for very large x so that boundary terms do not contribute.

After Fourier transform

~ d . ~
oa) = [l = [ e o) (223

the action becomes

Y TNt 2 g2 4 71 —i(ptk)T
S—2/d a:/p/ké(p)[ m® + k* + ck* + .. |p(k)e "\t (2.24)

= ;/k&(_k)[—mﬂ + R+ okt 4L ]p(k). (2.25)

We further assume that our theory is defined with a UV cutoff A on each component of the

momentum A A 0 A 1 A d—1
dk dk dk*™

[t fre 226)
k k —A 27 —A 27 —A 2

Let us now split ¢ = ¢, + ¢z according to

o(k) = or(k) + ¢u (k) (2:27)
_ Jouk) [kul < DA, Y

om(k) |k, > bA, for some p

ntegrating out momentum modes maps the general Lagrangian onto itself and one can perform several steps

after one another, which inspired the name “group”. However, the mapping does not need to be invertible,
so the renormalization group is only a semi-group mathematically.

(2.28)

14



2.2. Renormalization Group

The field ¢y describes functions below A’ = bA, with a free parameter b € [0,1]. Our action
splits accordingly into

1 A B 1 A -
S=Su+Su =3 [ ou-RL 1) + 2/k SR 1u(k).  (2.29)

If we are only interested in low energy Green’s functions

OIT{on(r1) - 61 ()} 0) = / Doy / Do 1Sty (1) . dp(wn),  (2.30)

then the effect of ¢ is entirely absorbed into the normalization, so that

1 ,
O|T{pr(z1)...0(zn)}]0) = 7 /D(bL e (x1) ... or(xn). (2.31)
To directly compare Sy, with S, let us now rescale
K =— x' = xb. (2.32)

In terms of the variable &, the cutoff moves back to A. The action becomes

A
Sp = % / bld(—bk ) [—m? + 2K + ik + .. |d(bK)). (2.33)

Let us further rescale ¢(bk’) — ¢/ (k') x b5 to have a canonically normalized kinetic term.
The resulting action

1 A~, ’ m2 12 2 414 1
Su=75 | &R =gy + KT B 4 (W) (2.34)

shows that we get the same theory, but with

2
m? =" (velevant), ¢ — b2 (irrelevant), (2.35)

b2

so for b = %, for example, the mass becomes four times as large, while the coefficient of the
four-derivative term is four times smaller. If we iterate the transformation (making b smaller
and smaller), we get the renormalization group flow in the space of coupling constants:

When this analysis is extended to theories that include small couplings, the result is ba-
sically unchanged. The irrelevant operators remain irrelevant, and the relevant ones stay
relevant. However, it becomes very interesting to check what happens with marginal oper-
ators. The small perturbation induced by the coupling will make them marginally relevant,
or marginally irrelevant. For QCD, it turns out that the coupling slowly gets stronger as the
high-energy modes are integrated out. Starting with an essentially free theory defined with a
very high cutoff A, one ends up with a strongly coupled theory at low energy. This property
is called asymptotic freedom. As we will show now, the situation is opposite for ¢* theory.
Even if the theory has a large coupling in its Lagrangian, it looks more and more like a free
theory when the high-energy modes are integrated out.

15



2. The Wilsonian effective action

Figure 2.1.: The point m = ¢ = --- = 0, the massless scalar field action, is a fized point. This
is called the Gaussian fixed point.

2.2.2. ¢* theory

We now turn to ¢* theory. In Minkowski space with coordinates x; the associated Lagrangian
takes the form

1 1 A
_ d Loam 2 L 2.9 Ay
Su = [ ata 50107 - gmter - 30t (2.36)
but for our discussion, it is advantageous to do a Wick rotation i.e., write t; = —itpg,
x?w = —sz. Rewriting the Lagrangian, we obtain
. d Lopoe, 1 a0 Ay .
Sy =1 [ dzg 5(8u¢) +§m 10) -I-Eqb =1iSg. (2.37)

In Euclidean space, time and space are treated in a symmetrical way, which allows us to
impose the momentum cutoff on the absolute value |kg|? = k2% = l%% instead of the individual
components as in (2.27). Remember that in Minkowski space the condition k%, = 0 does not
imply that the individual momentum components are small: the momentum could belong to
an energetic massless particle.

The second important advantage of Euclidean space is that the path integral is much better
behaved. Instead of an exponential with a fast-changing phase, large configurations of the
action lead to exponential suppression. Dropping the subscript and writing z# = 2, k = k;
the Euclidean path integral with a cutoff A takes the form

m2
Z = /Dqﬁ exp {— /dda?<;(8u¢)2 + TQSQ + i!gb4>}, (2.38)

where D¢ = Hlk\<A do(k). We now again split the field into a high- and a low-energy
component

(k) = (k) + o (k), (2.39)

where the two involve cutoffs
or(k) = o(k) O(|k| < bA), 2.40)
o (k) = (k) O(|k| > bA) 2.41)
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2.2. Renormalization Group

in addition to the overall cutoff #(|k| < A) present in the original field.> The quadratic part
of the action will again just turn into a sum of quadratic actions, but the interaction now also
includes crossed terms:

GL% n ¢7 b n ¢} om

3! 212! 3! (242)

S(6r, + dm) = S(6r) + S(bm) + / e\ [

Now we will derive the Feynman rules and then integrate over ¢y to lowest order in pertur-
bation theory. The propagators in the free theory are

A g4
A= O T{ou(@)o0}10) = [ Gge™ ol <b), (243)
d*k 1

ikx

271)4e k2 +m

A
Air = (O T(on()on(@}0) = [ - SO0k >0, (244)

which we will denote as

A =—"", (2.45)
Ay = =7, (2.46)

The mixed propagator
(0] T{on(x)dr(x)}]0) =0 (2.47)

vanishes since there is no such term in the action because the conditions 6(|k| > bA) and
0(|k| < bA) are mutually exclusive. The Feynman rules for the interactions are

Note that the factorials in (2.42) neatly arrange themselves so that the n-th power of a

given field is divided by n!, which cancels the factor from identical contractions.
At tree level, we have diagrams such as

\_/ v

= 0(|p1 + p2 + p3| > Ab), 2.48

which corresponds to a ﬁ—snppressed qb% interaction after integrating out ¢g.

2We use the notation (z < a) = 0(a — z)
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2. The Wilsonian effective action

However, we are mainly interested in the behavior of the ¢* interaction. In this case, there
is no tree-level contribution, but one-loop diagrams of the form

are diagrams in the low-energy theory, so we only need to evaluate (1), (3) and
(5). It turns out that (3) only contributes to the mass term ¢2, not the 1nteract10n. D1agram
(5) vanishes when the external momenta are set to zero since then the loop momentum no
longer has any support. This diagram can therefore only contribute to higher-dimensional,
irrelevant operators. This leaves diagram (1), for which we get

D —AZ/ k1 ! B(|k| > Ab)A(JK| < A)
175 (2m)% k2 + m2 (k + p1 + p2)? + m?

X 0|k + p1 + p2| > Ab)O(|k + p1 + p2| < A). (2.49)

Since m < Ab, p!' < Ab (the external momenta can be taken arbitrarily small), we can Taylor
expand on the level of the integrand. Higher orders in the expansion are suppressed by ¢ Iif
and match onto irrelevant operators. Setting to momenta to zero to extract the contrlbutlon

to the gb‘i interaction gives

2 d
Dy = % / (dl;d(ki)ze(m > AD)O(k| < A) + ... (2.50)
IS LI
> @) /A dk k (2.51)

A2 Qy Ad— 4—(Ab)d_4

= 2.52
2 @end d—4 (2:52)
27rd/2
with Q4 = F(z) d
Ad—4 _ (Ab)d—4 1— bd—4
li = lim —— = —loghb. 2.
i d—4 it d—4 8 (2:53)
Further, for d = 4 we have Q4 = 272 and thus
A2 1
Dy = log —. 2.54
1= 1672 0g b (2.54)
Accounting also for the crossed diagrams and yields the result
3 et o (2.55)
~16m2 %% ' '
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2.2. Renormalization Group
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Figure 2.2.: The coupling as a function of the parameter b (black line), for the choice A = 10
for b = 1 (blue dotted lines). The red, dashed line shows the Landau pole,

i.e. the value of b where at which the coupling becomes infinite in the one-loop
approximation (2.59). Note that the coupling goes to zero as b — 0.

In the low-energy theory, this contribution must arise from — [ d4x2\1—;¢%, so we can identify

3321
N=X-"—log~ 2.
1672 b (2.56)
The coupling gets weaker when high-energy modes are integrated out! Let us imagine that

we integrate the high-energy physics little by little, so integrating

=+ dogh (2.57)
~ T1em2 0% '
we find O
dX -1 1 3
i = logb 2.58
/m) X T TN 1672 2B (2:58)
and thus

YO
1+ 16%x\(l)log%

A(b) = (2.59)

Our analysis was a bit simplistic, in that we only looked at one operator, ¢*, and did
not include the effects of irrelevant operators. Also, our conclusion is only valid at small
coupling since we computed our result to the lowest order in an expansion in the coupling
constant. However, all available (perturbative and non-perturbative) evidence suggests that
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2. The Wilsonian effective action

the behavior persists at arbitrary values of A. Since the coupling becomes small at low
energies, one needs to start with a sufficiently strong coupling at large values of the cutoff

A(b)
M) =13 T (2.60)
Since A(1) — oo for log% = %ﬁ our perturbative analysis suggests that the cutoff cannot
be arbitrarily large, log% ~ log % < %%'

Since we did our analysis in perturbation theory, the extrapolation A\ — 0o is not meaning-
ful, but a non-perturbative analysis leads to the same result: if one takes the cutoff too large,
one ends up with a free theory at low energies. Theories that have the property that the
cutoff cannot be chosen arbitrarily large for non-vanishing A are called trivial. All evidence
strongly suggests that A\¢* is a trivial theory. As in the case of irrelevant operators, the term
trivial is not optimal. What it implies is that a theory like ¢* cannot be valid to infinitely
large energies and must be interpreted as a low-energy effective theory.

Historically, the discovery by Landau and collaborators that the coupling (2.60) grows
at large energies and seems to explode at large, but finite energy made people skeptical
about quantum field theory as a framework for fundamental physics. The scale at which
the coupling diverges in the approximation (2.60) depends exponentially on the value of the
coupling. Denoting this scale by A and the low-energy scale by Ag = bA, the pole occurs at

1672) : (2.61)

A:Aoexp<)\(b)

so for a weakly coupled theory at low energies, the Landau pole arises at a very high energy.
In QED, A ~ 10%"" GeV, much higher than the Planck scale A ~ 10 GeV, so in practice the
presence of a cutoff is not a problem. For some time, people believed that all QFTs would
have this behavior. It was then found that there is one exception, namely non-abelian gauge
theories which have the opposite behavior. In these theories, the coupling becomes weaker at
high energies, a property called asymptotic freedom.

To finish this chapter, let us introduce a commonly used term. In our operator discussion,
we considered Wilson coefficients g; of dimension ~; which scale as

gi= CiA (262)

If the coefficient C; would be A independent, the logarithmic derivative would simply give
the dimension

d
Ad—A Ing; = —v; (2.63)

of the coupling. The ¢* coupling X is dimensionless, i.e. it has scaling dimension v = 0, but
above we found that it nevertheless has a logarithmic dependence on the cutoff A

d 3 ,

This additional logarithmic A dependence of the dimensionless coefficients C; is generated by
quantum effects and is called the anomalous dimension of the operator.
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3. Continuum effective theory

The construction of the Wilsonian effective action is physically very intuitive, and leads to a
new perspective on renormalization. However, actually integrating out the physics above a
cutoff A is typically as difficult as solving the theory.

Instead of explicitly integrating out the high-energy physics, it is much easier to simply
construct the most general low-energy theory, i.e. to use a bottom-up approach in constructing
the effective Lagrangian rather than a top down approach based on computing a complicated
path integral. Also, it is much simpler to work without a hard cutoff and to treat the effective
theory like a standard continuum field theory. To get the effective theory in this bottom-up
approach, one follows a number of steps, which we now discuss in turn:

1. Identify the low-energy degrees of freedom. This can be simple: e.g., if we consider a
theory with a very heavy particle and weak coupling, the low-energy degrees of freedom
are simply all light particles. In other cases it is not trivial: in QCD, the low-energy
degrees of freedom are pions, kaons, protons, neutrons, etc. and not the quarks and
gluons in the high-energy Lagrangian.

2. Introduce a field for each degree of freedom and construct the most general low-energy
Lo consistent with the symmetries of the full theory. Order the operators in Leg by
their dimension.

3. Matching. To determine the coupling constants in L calculate a number of correlation
functions (or scattering amplitudes) in both the full and the effective theory. Expand
the full theory result around the low-energy limit and adjust the Wilson coefficients in
Leg in such a way that the full and EFT results agree.

4. RG improvement. The perturbative expansion of the Wilson coefficients can be im-
proved by using RG equations for the coefficients.

It is simplest to use dimensional regularization (and the MS scheme) in both the full and
the effective theory. At first sight it seems troubling to work without a hard cutoff and
integrate out to arbitrarily high energies even in the low-energy theory, which is not valid
at high energies. However, we know from Wilson that we can absorb arbitrary high-energy
physics into the couplings of Leg. By adjusting the couplings, we can thus obtain the correct
low-energy results despite the incorrect behavior of our amplitudes at high energies.

Let us use a toy model with a heavy and light scalar field to illustrate the above steps. Our
full theory is

1 m? 1 M?
L 25(3,&%)2 - 7¢% + 5(8M¢H)2 - T(ﬁ%{
A A A g
— Gr0L SO — TGk — ool (3.1)
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3. Continuum effective theory

Note that £ is symmetric under ¢;, — —¢r. To renormalize the theory (i.e. absorb all
divergences of loop diagrams) we need to include also the terms

6L = A+ Boy + Co, (3.2)

but we assume that A, B, C are renormalized to zero. These terms will not be relevant for
the discussion. Now let us follow the different steps to construct Leg:

1. The low-energy degrees of freedom for E <« M are just the light scalar particles de-
scribed by the field ¢;. We will denote the effective theory field by ¢y like the cor-
responding full theory field. However, all that matters at this point is that the low
energy theory contains a light scalar field with a ¢; — —¢; symmetry, for which we
well construct a Lagrangian.

2. The effective Lagrangian takes the form
5\ 4 1 0274

1 2 ﬁ’l2 2 2
Leg 25(%%) Ty 7, — I% ~ 52 or0%or (3.3)
1Cs0 6 1Cu2 5 9 1
EERYEACIT Ve qzsLD§Z5L+O<M4)’ (34

where we only included operators up to dimension § = 6 and used the ¢ — —¢r
symmetry to exclude odd powers of the field. To show that all other d = 6 operators
reduce to these three one uses integration by parts and drops total derivatives. Note that
the coefficients of the operators in L.g are different than the ones in the full Lagrangian
(3.1). We already know from Wilson effective theory that the couplings (or Wilson
coefficients) change when one integrates out high-energy physics, so m # m, etc.

3. Matching. To extract the values of m, A\, Cs 0, and C42 we will now calculate the two-,
four-, and six-point functions. We will show below that the effect of (5 4 can be removed
via a field redefinition if one only wants to reproduce physical quantities at low energies
(rather than the full off-shell Green’s functions), see Sec. 3.2.

3.1. Matching

In this section we will perform a set of tree-level computations in both the full and effective
theory and adjust the couplings in Leg so that the effective theory reproduces the full theory
results. This should be possible, since our effective Lagrangian is the most general Lagrangian
for the given degrees of freedom. Since we included all operators up to dimension § = 6 our
Lagrangian will reproduce the full results up to corrections from § = 8 operators which are
suppressed by 1/M*.

To perform the matching we should compute the same quantity in the full and the effective
theory. The simplest possibility is to compute the time-ordered n-point Green’s functions

G(z1,22,...,2n) = (0| T{p(x1) ... Pp(x,)}|0) (3.5)

introduced in (2.1). We will do the computations in momentum space and work with the
Fourier transform G(pi,p2,...,pn) of (3.5). It is furthermore convenient to work with the
truncated Green’s functions I':

A |
(27r)d5(d)(p1++pn)r(p17p277pn) :G(p17p27-~7pn)H N (36)
i=1
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3.1. Matching

Figure 3.1.: Structure of the four-point function G(p1, p2, p3, p4). The contributions the exter-
nal lines give rise to full two-point functions G(p;) (shaded circles). The remaining
part corresponds to the truncated 4-point function I'(p1, p2, p3, p4) (dotted circle
in the center).

which are obtained by dividing out a full propagator for each leg and factoring out the overall

momentum conservation delta function. The propagator is related to the two-point function
by

G(p) = / diy 7171 (0| T{ (1) $(0)} [0) (3.7)

so that
G(p1,p2) = (2m)46D (p1 + p2) G(p1) . (3.8)

If the effective theory reproduces the two-point function and the truncated Greens functions,
it reproduces all Green’s functions. For the four-point function, the relation between the full
and the truncated Green’s function is illustrated in Figure 3.1.

It is not really necessary that the effective theory should reproduces all Green’s functions
of the full theory. It is sufficient that physical quantities are the same in both theories. The
Green’s functions are not physical since they depend on the normalization of the field. A
sufficient requirement is that the effective theory reproduces the scattering amplitudes M,
which are obtained from the truncated Green’s functions through

iM(p1,...,pn) = (ﬁ)n L(p1,p2,---.pn) (3.9)

for on-shell momenta p; after multiplying with the on-shell wave-function renormalization
constants obtained from

(0] $(0) [p) = VZ, (3.10)

where |p) is a one-particle state. It is easy to verify that M(p1,...,py) is independent of the
normalization of the field ¢. We note that only the connected part of I' contributes to the
scattering amplitude, so we can replace I' with its connected part on the right-hand side of
(3.9). Also for the matching, we can restrict ourselves to reproducing all connected Green’s
functions, since the disconnected ones are just products of lower-point functions. The relation
(3.9) between scattering amplitudes and truncated, connected Green’s functions is called the
Lehmann-Symanzik-Zimmermann (LSZ) reduction formula. For its derivation, we refer the
reader to QFT books.

23



3. Continuum effective theory

Effective theory computation

The two-point function is just the inverse of the propagator

. o o C
ily = iG Y p) = p* — m? — %(pz)g. (3.11)

The two-point function is obtained from the Fourier transform of quadratic part of the action,
up to the factor 1/2 in the Lagrangian which gets cancelled because there are two equivalent
contractions of the fields. The four-point function corresponds to the scattering of four iden-
tical particles, leading to

D1 pP3
iTy = X T X + truncated (3.12)
A Cy2
P4

-~ C
_5_ % 21
M?3
where the result for the diagram with Cy9 is derived in Appendix B. The last diagram
corresponding to an external leg correction due to C5 4 does not contribute to the truncated

Green’s function. The six-point function involves a contact term proportional to Cs o and
diagrams composed of two insertions of A, which we will not need to consider:

[(p1 +p2)* + (p1 — p3)” + (01 — pa)?] (3.13)

iTg = j’;g T (3.14)
Full theory computation
The propagator in the full theory is
ily =iG L (p) = (p* — m?), (3.15)
so that
m=m, Coy =0, (3.16)

where the second condition arises because Ca 4 leads to a p* term in the two-point function,
which is not present at tree level order in the full theory. Please note that the relations (3.16)
only hold a tree level and will be modified by loop corrections. The tree-level four-point
function is given by

PO

(3.18)

= A +i(—ig) + +
g 9)° (P1+p2) - M2 (p1— P3) - M2 (p1— p4) — M?
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3.2. Field redefinitions

Since p; < M at low energies, we can Taylor expand I'y, leading to

. 392 92
il'y = A — WE A [(p1 4+ p2)® + (p1 — p3)® + (p1 — pa)?] - (3.19)
Comparison with the EFT result gives our first non-trivial matching condition

B 392 2

3
A=\ — Cy2 J

Finally, we have the matching of the six-point function, involving the diagrams

il = \ * + >=%+ (3.21)

The diagrams in the first line are one-particle-reducible with respect to the light field ¢ .
These diagrams are automatically reproduced since we matched the four-point function. Only
the diagrams in the second line will contribute to the matching on Cg. Since the operator
does not involve derivatives it is sufficient to compute I'g for vanishing momenta (p; = 0).
The resulting matching condition is

C L . T \2
N :z(—zg)2(—mHL)(_Tl2) % 90 (3.23)

(3.22)

so that the Wilson coefficient is given by

P*AuL
M2
Note that each of the diagrams in the second line comes with a combinatorical factor of
1, since the vertices in (3.1) include 1/n! factors if they involve a given field to the n-th
power. However there are many different diagrams, which are obtained from the first one by
permuting external legs. The combinatorial factor in (3.24) is given as 90 = 6! x (%)2 X %,
because two permutations each at the two gb%(ﬁH and the gb%(ﬁ%{ vertices are identical. This

completes the construction of the effective theory at tree level.

Ce0 = 90 (3.24)

3.2. Field redefinitions

With our matching computation we ensured that our effective theory reproduces the full the-
ory result for the off-shell Green’s functions. However, if we are only interested in physical
quantities, such as scattering amplitudes, we can simplify the Lagrangian using field redefi-
nitions. After all, the fields are just integration variables in the path integral and we should
be able to change variables in the integral. As an example, consider

61— |1+ 1730] or. (3.25)
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3. Continuum effective theory

Inserting this into Leg and neglecting ﬁ terms, we get

a A
Lot = Lot = 7591 <D +m? + W%)Dm, (3.26)
where we used an integration by parts for the kinetic term. By choosing oo = —%0274, we can
cancel the term —% %124 ¢0%¢ in Leg so that E’eﬁ no longer contains this term:
Ch A
Lot = Lettlcoamo + 57 or(m® + §¢%)D¢L- (3.27)

and the extra contributions correspond to operators which are already accounted for in the
Lagrangian, namely ¢rU¢, and ¢%D¢)L.

An efficient short-cut to derive the effect of the field redefinition it to use the leading-power
classical equation of motion (EOM)

(D +m? 4 %ﬁ) ¢, =0 (3.28)

in order to eliminate higher-power terms in the Lagrangian. However, one should keep in
mind that the field redefintion is performed in the quantum theory and does not rely on the
classical limit.

In general, performing field redefinitions

60+ (553) 10) =6+ 66 (329)
generates
1 \n ) 5\ 5 1 n+1
Lo L+ (3) 10 Do mto s 36| +0 ((3) ). G30)
o¢
EOM, from $§2

and allows one to systematically eliminate EOM terms from L.g. The reason that the classical
EOM appears is that one can interpret the redefinition as a variation of the field, see (3.29)
and that one can linearize in the variation since the higher order terms in d¢ are power
suppressed. Also, due to the suppression of §¢ by 1/M?" it is sufficient to consider the EOM
of the leading power effective Lagrangian (3.28) since the contribution generated by irrelevant
operators in the EOM are suppressed by additional powers of M?.

In practice, one can iteratively perform as set of field redefintions to eliminate all EOM
terms order-by-order in 1/M?2. To this end, one first perform a general field redefintion (3.29)
with n = 1. This can be used to eliminate all 1/M? EOM operators in Leg. Next, one
performs a general redefinition with n = 2. This will leave the 1/M? operators unchanged
but eliminates the EOM terms at 1/M*%, and so forth. The upshpot is that one can always
eliminate all EOM terms to any desired order.

The field redefinitions can reduce the number of operators in L.g and they leave the physics
content of the theory unchanged. This is true because:
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3.2. Field redefinitions

1. ¢ and ¢’ have the same quantum numbers, so after inserting states

lim (0] T{¢(w1) - }10) = 3 (0] (1) | X) (X T{....}|0) (3.31)

—
* X

the same amplitudes can be extracted from the theory. The only thing that will change
are the Z-factors, which for one-particle states [p) are given by (0| ¢(0) |p) = Z/2.

2. The Jacobian det (%’,) is trivial, at least in dimensional regularization (see below).

Let us illustrate the first point using an explicit computation of a scattering amplitude
before and after a field redefinition. For simplicity, we will do our computation using standard
¢* theory

2 m?

1 o A
L=5(0u0)° = -0* - S0, (3.32)

The tree-level 2 — 2 scattering amplitude is
4
M= —iTy (\FZ> - - A, (3.33)

where we used that the Z = 1 at tree level. Let us now calculate this amplitude after the
field redefinition ¢ — (1 + %D)qﬁ.

a 2 A 2
£=L-=5 (D+m +§¢>D¢, (3.34)

external leg correction,
removed by truncation

which gives

. a4 1, V7
= A1 gmEm x| (V2)
=1
4Am?2

~ o 4
=X (1 - WélmQ) (\FZ) . (3.35)
See Appendix B for details how to derive the Feynman rule for the ¢3¢ term in (3.34).To
get the Z-factor, it is easiest to evaluate the two-point function. Inserting one-particle states
in the definition (3.7), one can show that they lead to a pole in the propagator

Z

G(p) = —— + "non-pole” , 3.36
D= (3.36)
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3. Continuum effective theory

when p? is equal to the physical mass m%h, whose residuum is the Z-factor. Evaluating the

contribution of the extra terms in the Lagrangian, we get

— =i <—p2><—p2+m2>

p2_m2_zﬁp2_m2 22 —m?

M2p> p2 m2

1+ + "non-pole”, (3.37)

i
T p2—m? (
We see that the extra contributions did not change the position of the pole in the prop-
agator denominator, mp, = m, but changed the residue so that the on-shell wave-function

renormalization is given by
2c

Z=1+ mm? (3.38)
For the scattering amplitude, we thus have
_ 5 9 2a0 4 2 X
M=— (1_W4 ) L) = +O<M4) (3.39)

precisely as before the field redefinition (to the order considered). It is illustrative to see how
the general statement 1.) is realized in the explicit computation.

Finally, let us derive statement 2.), namely that the Jacobian is trivial in dimensional
regularization. As usual, the Jacobian is given by a determinant

/ Do — / D det (gg) (3.40)

In our case, ¢ — ¢ + (i)n f(¢") and since we perform functional integration, the jacobian

M2
is a functional derivative
5 / ]‘ n / / /
&f’ =d@—a)+ (573) F0@) s —a). (3.41)

It is a local function since we only considered local variable changes, i.e. ¢'(z) is only a function
of ¢(x), the function at the same point. A standard trick to get an explicit representation of
a determinant is to write is as a Gaussian functional integral

<5¢/) /Dc/Dcexp[/dd /ddyc 55° )]
= [ [peen]i [atven) [1+ (1) P )] . G

where ¢ and ¢ are Grassmann fields. Since these fields do not describe physical particles they
are sometimes called ghost-fields.

Since the term involving f’ is suppressed by #, it can be treated as a perturbation. The
corresponding ghost diagrams are loops of a “fermion” with “propagator” ; 2 (i.e., the ghost
fields do not propagate since they do not have a kinetic term). Such loops that do not involve
a scale, e.g., [d%k (% ) and vanish in dimensional regularization, hence det(s ¢,) 1.
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3.3. Matching at higher orders

3.3. Matching at higher orders

The general method to perform the matching is always the same: compute the same quantity
both in the EFT and in the full theory and adjust the Wilson coefficients (“coupling con-
stants”) in the EFT in such a way that the results agree to the given order of the low-energy
expansion.

At the tree level, it is simple to understand that the procedure works: the heavy particles
are always far off-shell and their propagators get expanded into a polynomial. Since Lg
contains all higher-dimensional operators, it generates the most general polynomial contri-
bution to the amplitude and by adjusting the couplings, we reproduce the full theory result.

Schematically:
¢4 2|:|¢2 QDQ 2
1 1 ( 2)2

1 1 p? p
oy v VERR VER VER VoA VERRE (343)

At higher orders, there are several interesting new features that emerge from the loop dia-
grams. Let us consider the self-energy diagram in the full theory

k

The following complications arise:

1. The loop momentum k can be small or large: the heavy propagator is not always off
shell.

2. Renormalization: there are UV divergences both in the full and effective theory, and we
thus have to renormalize all couplings/Wilson coefficients.

3. Loop diagrams are non-trivial (i.e., non-analytic) functions of external momenta and
masses, but the Wilson coefficients C; can only depend on the high-energy scale M (Lqg
must be local). Accordingly, the non-trivial parts of the amplitudes must be present in
the EFT loop computation, as they cannot be obtained from the C;. In the end, this
has to work out because the nontrivial dependence on the momenta is due to low-energy
dynamics which is identical for L and Leg, but it will be illustrative to verify this in
an explicit example.

4. Due to renormalization in L.g, the Wilson coeflicients depend on the renormalization
scale u: C; = C;(p). The renormalized coefficients involve terms of the form g2 log T
Arrlog 47 etc.
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3. Continuum effective theory

Full theory diagrams EFT diagram
AL AHL g9 ; A

(a) (b) () (d)

Figure 3.2.: One-loop corrections to the two-point function. In the full theory the two-point
function gets contributions from the four diagrams (a) — (d), while there is only
a single diagram contributing in the effective theory.

To see how all this works in practice, we will now perform a one-loop matching computation
in the simplest possible setting: we will compute the two-point function and the one-loop
corrections to m, the mass of the light particle in L¢g. The relevant diagrams are shown in
Figure 3.2.

The perturbative result for the two-point function takes the following form

= + — —i%) — (- 7+
T p2—m2 p—m2 pme p7m2 p27m2 p7m2

)
TR _mroy (3.44)

where the quantity 3 will in general depends on the momentum p? and corresponds to the
one-particle irreducible contributions, i.e. diagrams which cannot be cut apart by cutting a
single propagator. Below, we will compute 3 and match the results from the full and effective
theory. The quantity X is closely related to the truncated two-point Green’s function

iT(p) =G~ (p)G(p)G~'(p) =iG ' (p) =p* —m* —X. (3.45)

Full theory computation

For the above definition ¥ is obtained by computing the blob in (3.44) corresponding to (—iX)
and multiplying by ¢ to obtain ¥. The contribution of diagram (a) is thus given by

1 [ d%k i
$@ _i(—ix, 12 / 3.46

Z( AL )2 (27r)dk:2—m2’ ( )
where the factor one half is the symmetry factor and p?¢ is the renormalization scale, in-
troduced to make A dimensionless in d = 4 — 2e. Using the results from Appendix A we
find

A d d d
(a) — AL -3 _ - 2\5—1, 2¢
b 5 (4m) 2F(1 2)(m )2
m2\g, 1 m?
= 55,2 {—6 + v —log(4m) — 1 + log 2z +0O(e)| . (3.47)
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3.3. Matching at higher orders

Since —vyg + log(4m) always appear in the same combination with the % term, and since they
are numerically not small, it is customary to remove not only the % terms when performing
renormalization, but the entire combination. This is called the modified Minimal Subtraction
(MS) scheme, or MS scheme. One way to achieve this, is to set u? = ?e7# /(4r) so that

2 2
)\L 1 m
IO 7 R R P . 4
392 [ . + log 2 +(9(e)] (3.48)
The calculation of diagram (b) is analogous to (a), leading to
M Agp [ 1 M?
%0 = —= —1+4log = : 4
3972 [ . + log 22 + O(e)] (3.49)
The expression for diagram (c) is the same as (a) apart from the additional heavy propagator
1 i dik i
$(0) _ 1522 / _
I e (2m)d k2 — m2 (3.50)
2 2 2
gc m” |1 m
= 241 —log — . 51
s [F -8 00 (3.51)
Diagram (d) is the only non-trivial contribution, namely
dek 7:2M26
2@ = 4(; 2/ : 3.52
09 | i [+ 7 — w07 = 317) (392

We follow the strategy described in Appendix A to bring the integral into standard form, by
introducing a Feynman parameter

1 ! dz
= 3.53
[(k + p)? — m?|(k? — M?) /0 [(k + pz)2 + 2(1 — z)p? — 2m? — (1 — ) M?)? (8.53)
=—A(z)
and shifting the integration variable by k — k& — pz. This yields
2 2€ 1
@_ _9IHr —e
> el /0 dz [A(@)]
2 2 1 2 2 2
g 1 M am*+ (1 —z)M* —z(1 —x)p
=4 |- tlg dzl
16#2[e+0g,u2+/0 x log 2
2 2 2 2 2
g 1 M P m m 1
= g 1 T e T = 54
1672 [ ¢ T8 g2 oM2 M2 OgM2+O(M4)] (3:54)

where in the last step we expanded in 1/M?2. Note that the low-energy expansion does not
commute with the integration. Naively expanding the integrand would lead to divergent
integrals. This problem arises because near z = 1 the scale (1 — x)M? becomes smaller than
m? so that the expansion in m?/M? is not justified. However, it is possible to expand in p?
before the integration, which reduces the integral to

! —z(1 — z)p? ! xm? + (1 —x)M?
d dz1 3.55
/0 Tem? 1+ (1— o) M2 +/0 vh08 M2 (3.55)
p? m? logj\"}[—22 1
=i 1t o—ap tO5m) (3.56)

Note that the result (3.54) for the integral contains a logarithm of m?

dependence would not arise if one could Taylor expand the integrand.

. This non-analytic
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3. Continuum effective theory

Effective-theory computation

The effective theory diagram reads

m2\ 1 m?
_ 2 _14]oo — 3.57
3272 | € tog ji2 (3:57)

and is obtained from the full theory diagram X(®) after substituting A\; — ), the coupling in
the effective theory.

Renormalization

We now renormalize, i.e., absorb the %—pieces of X into the couplings of the full and effective
theory. To perform the renormalization, one would rewrite the all bare parameters in the
Lagrangians in the form

2 = Zmm*(u), A= Z\A\u), (3.58)

where the Z-factors absorb the divergences arising in the loop diagrams. The quantities
m(p) and A(u) denote the renormalized mass and coupling, which depend on the scale s,
while the quantities without the p argument refer to bare parameters. Note that the bare
and renormalized quantities are the same, up to loop corrections since the Z-factors are equal
to one at lowest order.

In addition, one also introduces a wave-function renormalization constant to absorb diver-
gences in the normalization. For the effective theory, the Lagrangian then reads

1 m2 A
Lo = §Z¢(6u¢)2 — 7Z¢¢>2 — aZq%qs‘*. (3.59)

We distinguish the field wave function renormalization Z; from the on-shell wave renormal-
ization constant Z defined in (3.10). The the on-shell wave renormalization constant Z is the
residue of the propagator pole, see (3.36), while the value of Z,4 depends on the choice of the
renormalization scheme.

Looking at the two-point function in both the full and effective theory, we see that its
divergence is p? independent. It can therefore be absorbed into mass renormalization

iTo(p) = Zyp* — ZgZm (1) — % (3.60)
if we set Z, =1 and
1 -
Z =1 Z+ 0N 3.61
m + 3272 € +0() ( )

then the il'y(p) is finite up to the order of the computation. In exactly the same way, also the
full theory two-point function can be renormalized. As discussed above the renormalization
prescription which absorbs only the divergent terms after redefining u — f is called the MS
scheme.
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3.3. Matching at higher orders

Matching

After renormalization we now obtain a finite result for I's(p), both in the full and the effective
theory. Next, we perform the matching, i.e. we adjust the the finite parts of the coupling
constants in the effective theory so that they reproduce the full theory result. We note that
diagram iX(@ in (3.54) involves a p*-term. To reproduce this term, we will need to adjust the
coeflicient of the kinetic term in Leg using a finite value for the wave-function renormalization
factor Z4 introduced above. To perform the matching we evaluate the difference between the
two-point functions

A =il5"(p) — il5" (p), (3.62)

which should be absorbed into the couplings of L.g. Explicitly, the matching condition reads
0=A=m?—p> = Zym® + Zyp* + 410 — 5o, (3.63)

In order for this to work, all low-energy physics has to drop out of A. In particular, the log m?
pieces in Yg, and Yeg have to cancel, since we cannot absorb a dependence on a low-energy
scale into the Wilson coefficients. Let us look at these terms

m m 2

2 2 39 _
JANLLINS PRSI PSS S | RFI 3.64
3272 8 2 [ L= e }WL ’ (3.64)

where we used that m = m up to higher orders in the coupling constants. In our tree-level
~ 2
calculation we found A = A\, — 3%, so our L indeed reproduces the low-energy part of the

full theory.

1 m? M? M? g°
A =m?(p) — Zym? — 2(1 7) — (1 7—1)—2 Zyp? — —2—p°.
m () = Zgm” (1) + 70 [g +o) Ty | (lee P Zyp” = 5o sP
(3.65)

where the mass renormalization has absorbed the divergences. In the terms suppressed by
powers of the coupling constants we can identify m = m = m(u) = m(u) up to higher orders.
From the momentum-dependent term we read off

g2
Zy=14 "=, 3.66
¢ 3272 ( )
which amounts to a finite wave-function renormalization Z;. Note that we treat the nor-
malization a bit different than the remaining parameters, where we have split the Wilson
coefficients into Z-factor and a finite renormalized part, see (3.58).

2 2 2 2
~ g 1 m M M
m?(u) = m2(,u)<1 - 327r2) + 1672 [gz <1 + W) + 2)\HL} (log T 1) +--- (3.67)

We note the presence of a term proportional to Az M?. The same contributions will also
arise in the physical mass mp), determined by L(p? = mgh) = 0. If mypy, is small, this implies
a large cancellation among the terms in (3.67). This is again the statement that small scalar
masses are unnatural.

Expanding the full theory result to higher powers 1/M?, one can determine the Wilson
coefficients of power suppressed operators such as
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3. Continuum effective theory

C
—nfi0el = ,L (3.68)

In this case, additional one loop diagrams which involve the power suppressed operators will
need to be computed in the effective theory. By computing the four- and six-point functions
one can then determine also \, C4,2, and Cg o to one-loop accuracy. In this case, the number
of diagrams becomes quite large. On the other hand, to perform the matching for ), the
four-point function at vanishing momentum is sufficient. We will come back to the matching
for X below.

3.4. Power counting

In the matching calculation we have assumed that the higher-order Lagrangians do not con-
tribute at leading power. At tree level, this is obvious, since the operators in the power-
suppressed Lagrangians have additional derivatives and/or fields. But in loop integrals the
momenta are large, so it is not immediately clear that higher-derivative terms are suppressed.

For instance, the contribution of Wgﬁ%ﬂ”q&% to the two-point function at zero external
momentum reads
1 a, (k)"

and the loop integral, in principle, extends over all scales. The advantage of dimensional
regularization is that the loop integrals in the EF T only depend on low-energy scales, therefore

by dimensional analysis 6% oc (m?)%2=1 x (m?)" x W, since scaleless integrals are set to

zero. Therefore, the loop contribution is indeed suppressed by (]\”4‘—22)”

The power counting in dimensional regularization is thus very simple. One simply counts
the 1/M suppression factors arising from the effective Lagrangian. If we compute a diagram
with a single insertion of an irrelevant operator suppressed by (ﬁ)n, then the contribution
to the observable will be suppressed by (ﬁ)n, independently of the loop order at which we
compute with the leading-power effective Lagrangian. Similarly, if we compute a diagram
involving two EFT operators, one suppressed by (#)n and one by (ﬁ)m, then the total
contribution is suppressed by (ﬁ)m_m Using dimensional regularization, it is therefore
trivial to read off at which power in 1/M a given contribution enters.

Note that in a cutoff regularization

1 A 4 (kz)n d2 A2n

so that the loop contributions of higher-dimensional operators are not suppressed. The terms
that violate the tree-level power counting are trivial cutoff terms and can thus be subtracted,
but they make computations in a cutoff regularization cumbersome.

3.5. Renormalization-group improved perturbation theory

The Wilson coefficients C; in L.g depend on the coupling constants of the full theory as well
as the large energy scale M. The dependence on M is logarithmic. For a full theory involving
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3.5. Renormalization-group improved perturbation theory

X g X

. . . . . . 2
Figure 3.3.: One-loop corrections to the four-point function proportional to A% .

a coupling constant A and a large scale M, the result for the renormalized Wilson coefficients
will have the form

M2
Ci(p) = Y 4 A() [ci(“) log > + Cfl’o)] (3.71)
M? M?
+ N2 (1) {052’2) log? oz + C’Z@’l) log oz + 052,0)] +e (3.72)
(n,m)

where the n-th order coefficients C; , with m < n, are pure numbers, determined by the
matching calculation. The form of (3.71) makes it obvious that we should choose p ~ M,
otherwise perturbation theory will not work well because the log Aj—; terms become large and
will overwhelm the suppression by the coupling constant A.

In our one-loop matching calculation for m we found exactly this structure, in particu-
lar also the logarithmic dependence on M, except that our full theory has several different
couplings instead of a single coupling A. To better understand the consequences of the loga-
rithmic scale dependence we will now study one-loop scattering in our scalar effective effective
theory. For this we should extract the one-loop matching for the coupling A. This involves
a fairly large number of one-loop diagrams, but if we restrict ourselves to the contribution
proportional to )\%{L, then only the three diagrams shown in Figure 3.3 contribute. To ob-
tain the matching corrrection to A, it is sufficient to evaluate these diagrams at zero external
momentum. Together with the tree-level result (3.20), this gives the matching

2 2 2
_ 39]\4(2%‘) + 32;;(2“) log ]\52 ... (3.73)

A(p) = Ap)

where the ellipsis denotes loop contributions involving the coupling g or Ar. The couplings
Aw), Arz(p) and g(p) are all renormalized in the MS scheme and for simplicity we write
i — p from now on. To obtain a reliable result for 5\(/1), the coupling Mgz (1) must be small
and g~ M so that the logarithm is not too large.

The logarithmic dependence on the renormalization scale p is quite characteristic for higher-
order corrections in quantum field theory and also arises in the effective theory. To see this,
consider the 2 — 2 amplitude at next-to-leading order, for which we get

M=>< +>°< +>< +><
:_Z\[1+32i2<—1+log7;f+f(satau)>]

- .
==X\ |1+ 3Mw) <log oz + f(s,t, u))] , (3.74)

3272
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3. Continuum effective theory

The finite part of the amplitude can be written as

1 1 2 1—
Fls,tw) =V(s)+ V() + V), V(s)= 3/ dz log “;”722 z)s. (3.75)
0
with the Mandelstam variables
s = (p1 + p2)?, t = (p1 — p3)?, u=(p1 —ps)?. (3.76)

Its precise form is irrelevant for the following discussion, but we see that V(s) is a number of
order 1 as long as s ~ m? as is characteristic for low-energy scattering. However, we again
have logarithmic dependence, this time of the form log 7;—22 so that we should choose p ~ m to
keep the logarithm small. We see that this leads to conflicting requirements: (i) the matching
in (3.73) requires p ~ M, while (ii) the EFT matrix element (3.74) requires p ~ m, but our
starting point was m < M so we cannot fulfill both conditions (i) and (ii) simultaneously. The
large logarithms are not specific to the effective theory, but are also present in the full theory
as terms of the form A" log" ]7@—22 and this results in a breakdown of perturbation theory (in
the MS scheme) for m < M, even if X is very small. In the presence of large scale hierarchies
in a quantum field theory, perturbative calculations become unreliable since the higher-order
corrections are enhanced by large logarithms.

Fortunately, the renormalization group in the EFT allows us to resum the logarithmically
enhanced terms to all orders by solving renormaliztion evolution equations. For a single
coupling constant, the renormaliztion group equation is written in the form

dX\(p) _ dA (1) = B(A(u)) . (3.77)

dlogp M du

The S-function on the right determines the evolution of the renormalized coupling as a func-
tion of the renormalization scale . For general Wilson coefficients, the evolution equations
are written as a matrix equation

dCi(p) _
dlog 1

Cj (1) i (A1) (3.78)

Operators of the same dimension “mix”, i.e., their RG evolution is coupled and the scale
evolution is driven by the anomalous dimension matrix v;;(A(z)). The fact that (3.77) and
(3.78) are written in different form is historical, we could extract a factor A(x) from S(A(y))
and write it in the form (3.78).

The strategy to resum large logarithms using renormalization group equations in the effec-
tive theory is illustrated in Fig. 3.5. One can first match at a high scale u, = M which avoids
large logarithms in the matching computations. By solving the RG evolution equations, one
then evolves the Wilson coefficients to a lower scale. Performing the EFT computations at the
low scale p; = m then avoids large logarithms in the EFT matrix elements. Solving the RG
evolution equation resums the logarithically enhanced corrections to all orders. Let us illus-
trate this procedure for the leading-order four-point function. To determine the S-function,
we use

d
dlog

=0, (3.79)
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3.5. Renormalization-group improved perturbation theory

M — match at high scale y;, * M

solve RG evolution equations

evolve Wilson coefficients
to lower scales

| compute low-energy processes
in EFT at y; & m

Figure 3.4.: General strategy for computations in EFT. By performing the matching at a
high scale 4 = M one avoids large logarithms. After solving the associated RG
evolution equations, one can choose ;1 = m to avoid large logarithms in the EFT
matrix elements.

since the physical amplitude is p-independent. This gives

d_ 500 sy 30
dlog(M)A(u)—ﬁ(A)— 62 T

We now solve this equation to evolve from the high scale up ~ M to the low scale p; =~ m.
The equation can be solved via a separation of variables

(3.80)

) g 3 2
/ = = 553 l0g /% (3.81)
Mun) A 32m M,
yielding
1 1 3 2
= log L (3.82)
Apn) M) 3277w,
The solution takes the form
3 A Hh
M) = 3 ~( ) e (3.83)
1 — 5z AM(pn) log £+

The coupling at the low scale p &~ m is then used to compute the scattering amplitude

1+ Al <log T'Z; + f(s,t, u))] . (3.84)
l

M= _S\(M) 3272

By performing the matching in (3.73) at a high scale p, ~ M and inserting the result into
(3.83) to get the coupling at the low scale p;, where we evaluate the scattering amplitude, we
have successfully avoided large logarithms in the computation.
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3. Continuum effective theory

Looking at (3.83), we see that it contains terms of the form X(uh)log/’j—i to all orders
in perturbation theory. Indeed, (3.82) shows that we count the large logarithm as 1 /5\
The procedure we follow is called RG improved perturbation theory. It eliminates the large
logarithms in favor of coupling constants at the high and low scale, see (3.82). One then

expands in both couplings which are counted as of the same order.

~ 2
At leading order in RG-improved perturbation theory, one resums the logarithms A" log" Z—S
1

by solving the leading order (i.e. one-loop) RG equation for the Wilson coefficients, together
with matching at the leading order. This procedure drops all terms suppressed by additional
factors of A(us) or A(z1). At leading order, one would thus drop the one-loop corrections both
in (3.73) and (3.84).

At next-to-leading order in RG-improved perturbation theory, one needs to include the
one-loop corrections in both (3.73) and (3.84) and take into account also the corrections to

~ ~ 2 ~
the RG evolution, which are of the form A x A" log" Z—S ~ A. This is achieved by solving the
l

evolution with the two-loop B-function:

dA < . A 17  A()\ 2

dlo(gp)b = AW =) [31(57/2 - 3(16%) +] ’ (3.85)
so that -

A R S S AV S A C VY5 ) (3.86)

1672 &, 9 " 16m2 °
pho Apn) M) Apn)

The phenomenon we illustrated with out toy model is a very general one: In the presence
of disparate scales, large logarithms of scale ratios destroy the perturbative expansion. The
use of an EFT allows one to disentangle the different scales and, by using RG evolution,
resum the logarithmically enhanced contributions. The prime example of a theory involving
disparate scales is the SM, which involves particles with very different masses. To avoid large
logarithms, low-energy calculations are never performed using the SM Lagrangian directly,
but an effective Lagrangian obtained by “integrating out” heavy particles such as t-quarks,
Higgs, W+, Z0.

3.6. Summary

Having worked out the construction of an EFT in our scalar-field toy example, we are now
ready for real-life physics applications of this technology. However, before discussing EFTs
within the context of the Standard Model, let us recapitulate the individual steps in the
construction and of the effective theory:

1. Identify the degrees of freedom at low energy.
2. Construct the most general £ with these degrees of freedom and the symmetries of the
full theory.

a) Higher-dimensional operators in L.g are suppressed by (ﬁ)", where M is a charac-
teristic high-energy scale. Their contribution to observables is suppressed by (%)”,

. . . . ~ loge
so only a finite number of terms is needed for a given accuracy e: n = (L)

b) Field redefinitions: higher-order terms in L.g that vanish by the leading-order
EOM do not contribute to physical amplitudes and can be omitted from Leg.
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3.6. Summary

3. Matching: determine the Wilson coefficients of the operators in Leg by computing a
number of quantities in both the full and the effective theory. Adjust the couplings
in Leg to reproduce the full theory result. If field redefinitions have been used, only
physical quantities match, otherwise arbitrary Green’s functions can be reproduced.

4. RG improvement: compute the anomalous dimensions and solve the RG equations for
the operators in L, i.e.,

Cilw) =Y Uij(un. p) Cj(pn) : (3.87)
/ Evolution no large logarithms
from pp = M for pp =~ M
tou~FE

resums logarithms
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4. The Standard Model at low energies

In this chapter, we turn to low-energy effective theories for the interactions of the Standard
Model (SM). In each case, the EFT approach simplifies calculations for a given sector of
the SM and is sometimes the only viable strategy to perform analytic calculations. We will
first treat electromagnetism (Euler—Heisenberg theory), before turning to weak and strong
interactions.

4.1. Euler—Heisenberg theory

Let us consider the QED Lagrangian

Laup A ] = — 1 PP Fuy + 01D — m), (@1)

where
iD, = i0, — cA,, (4.2)
Fiuw = 0,y — 0,4y = iy iD,] (4.3)

A, is the electromagnetic potential and 1) the electron field. Note that Lqgp is the most
general renormalizable Lagrangian for an electron interacting with the photon field. In the
SM, there are many other heavier charged particles (quarks, W=, u, 7), but according to EFT
logic, the contributions of all the heavier fields only appear via ﬁ suppressed operators (where
M =m., My,...). In other words, Lqgp is the leading-order effective Lagrangian describing
the interactions of e* and v, and it will be appropriate as long as F < 100 MeV ~ my, ~ M.

Many practical applications only involve photons at even smaller energies £ < 2m.. In
this case, electron-positron pairs appear only as virtual corrections and we can integrate them
out, i.e., construct an effective theory involving only photons. To do so, we first encounter an
interesting complication: since electron number is conserved, a given state, say with be™, will
be there even for £ — 0. To describe such a situation correctly, one has to use non-relativistic
EFT which we will cover in a later chapter. For now, we concentrate on the sector with zero
net electrons, in which e* only appear as virtual particles. To do so, we can describe the
electrons as an external current and add a term

Ly=—eA,J" (4.4)

to the Lagrangian. This description should work for macroscopic charged objects, as long
as we do not excite higher energy levels in their interaction with the photon. Note that this
interaction is only consistent if 9, J# = 0. Under gauge transformations

AP — AP 4 Mg, (4.5)
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4.1. Euler—Heisenberg theory

SO

/ d'z A, J" — / d'z A, JH — / d*zp 0, J" . (4.6)
N——~

Examples of configurations fulfilling 9,J# = 0 are
1. static charge distribution: J* = (p(r),0)
2. static current: J* = (0,j(r)) with V-j =0

If we now consider low-energy photons in the background of a source J#, we should be able
to describe their interactions with the effective Lagrangian

LegAy, J) = LB +£O 1 £& 4 (4.7)

The leading-order Lagrangian is

Z v
LW = — P — e Ay " (4.8)

and describes free photons. Let us now construct the operators of dimension 6 and 8, whose
effects are suppressed by O(m_?) and O(m_*), respectively. To obtain L.g, one writes down
all possible terms of a given dimension. The number of terms can be reduced to a minimal
set using

(i) Symmetries, e.g., charge conjugation. QED is invariant under
e— —e, A, — —A,, F, — —Fu,
and so has to be the effective theory.
(ii) Properties of F),,, e.g., its antisymmetry F*” = —F"* and the Bianchi identity

OulFyo + 0y Fopy + 05 Fpy = 0.

(iii) The leading-order EOM 0, F* = J¥.

We start with the d = 6 terms. Because of charge conjugation symmetry, L.g must be even
in F'*¥. This is the EFT equivalent of Furry’s theorem, which states that amplitudes with an
odd number of photons vanish in QED.

2 3 2 3
1 1
+ =0 (4.9)
2n+1 2n +1

This leaves us with terms of the form 92 F2. Using integration by parts, we can always achieve
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4. The Standard Model at low energies

that derivatives are not contracted with the field strength on which they act. This leaves two
possible terms:

01 = F*OF,,, (4.10)
Oy = (0PFM) (9, Fy). (4.11)

Using the Bianchi identity on Os, we find

Oy = (0P F") [=0pFyy — Oy Flyp]
= F*0OF,, — 0°F"o,F,, + total derivative
= —F"0OF,, — 0°F"0,F,, + total derivative
= —01 — Oy + total derivative,

so that the terms O; and Os are equivalent, 202= — O;. In addition, we can write down
terms

O3 =J,J¢,  O4=08,F"™J,, (4.16)

since J# has dimension d = 3. These two terms are equivalent upon using the EOM 0, F*" =
J¥. Moreover, up to total derivatives also Oz can be brought into the form Oy=0,F""0°F,,,
in such a way that all operators become equivalent to Os. Our final result can therefore be
expressed as

- 2
me

6
£© T, (4.17)
which corresponds to a contact interaction between the source and is irrelevant for photon
propagation or scattering.

The first terms involving photons appear for d = 8

o) 2 O
E(S) — m (F'LLVF/W) + mFuquaFapru' (4.18)
e e

In four space-time dimensions, we can rewrite
1 - 1
F,, FYF,,FP" = Z(FWFW)2 +3 (F*E,,)?, (4.19)

where F},, = %e‘“’p"Fpg. However, since e#**? is only defined in d = 4, it is preferable not to

use this relation.! Expressed in terms of E and B the two structures are
F"E,, =-2(E*-B*, F"F, =-4E.B. (4.21)

The two terms in £®) describe four-point interactions, but since they are suppressed by
O(m_*), they will be very weak at low energies where the EFT applies. In QED, these
interactions arise from fermion loops

1To derive it, use:
ot 02
w1 Opi
vivoravy .
Epipapzpa€ - | (4'20)

vy vq
R 7
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4.1. Euler—Heisenberg theory

Before considering these diagrams, let us study the low-energy vy — 7y scattering cross
section. This cross section scales according to

2
1
do ~ <4> ESe8, ed o a’. (4.22)
me
The factor ES is required to get the correct dimension do ~ E~2. An explicit computation
yields the unpolarized cross section:
do 1 6
2

E
o = 73 (48CT +4001Ca + 11C3) 5 x (3+ cos” 0)%, (4.23)

where cos@ is the scattering angle in the center-of-mass system. So far, v scattering for
E < me has not been observed experimentally, but there are plans to measure it using
intense lasers [10].2

To determine the Wilson coefficients C7 and C5, we need to perform a matching computa-
tion. It is simplest to consider the v scattering amplitude directly. Since we only need to ex-
tract two numbers, it suffices to evaluate the forward amplitude v(p1) +v(p2) = v(p1) +7v(p2)
and to consider two different helicity configurations. In QED, the amplitude is given by a
sum of box diagrams. Let us define the basic box diagram as follows

D1, p1 D3, 13
k—p1
BIHI (py o, pa,pa) =k Kt ps—p (4.24)
k + po
D2, p2 D4, b4

The full amplitude involves six box diagrams, which can be obtained from B by exchanging
external legs. The exchange 2 <+ 3 is equivalent to 1 <+ 4 and corresponds to reversing the
direction of the fermion line in B from O to ¢. This yields an identical result to B and
leads to a factor two in the scattering amplitude. Exchanging the adjacent legs 3 <+ 4 and
2 «» 4 yields two additional in-equivalent diagrams, each of which has a counterpart with a

2 At higher energies, v scattering has been seen in heavy-ion collisions [11,12].
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4. The Standard Model at low energies

reversed Feynman line. Taking into account a minus sign if initial- and final-state particles
are exchanged, the full amplitude is thus obtained by evaluating

AN1#2“3”4(p17p2’p37p4) =2BH1H2HsHA (p17p27p37p4) + 2BH RS (p17p27p47p3)

4.25
+ 28#1'”4#3//42 (p17 —P4,D3, _pQ) . ( )

and contracting the result with polarization vectors for the incoming and outgoing photons

*

M(p1,p2,p3,pa) = AP (D1 po s D3, PA)E s Eun€ g€y - (4.26)

Each photon comes in two polarizations A, i.e., €, = €,,(\;), but we suppress the polarization
dependence. To perform the matching we do not need the full information on the scattering
amplitude, only enough to determine the two coefficients C; and Cs. For our purpose, the
forward scattering ps = p1 ps = po is sufficient and we only need to spin structures, for
instance

Al — gH1M2gu3M4AMM2M3M47 ./42 — 9”1“39“2H4AM1M2M3V47 (4.27)

in both the full and the effective theory and then solve for C1, C5. The computation can be
further simplified by expanding the QED diagrams in the small external momenta, which can
be done on the integrand level in this case. After the expansion, the necessary integrals all

have the form
kZ)a
ddk(i
/ (k2 —m2)p

and are obtained directly from Appendix A, leading to

1 7
Cy = ——a?, Cy = 2

=L 49
36 90" (4.28)

In particular, the result for the one-loop amplitude is finite and does not contain any loga-
2
rithmic corrections proportional to log % In the EFT we can directly understand the reason

for this cancellation: the only loop in the EFT from £® is
, (4.29)

since the photon loop only contains scaleless integrals. Other loop diagrams are not possible
because a second vertex from £®) would give an additional m_* suppression and £® and
£ do not contain interactions. The operators in £ are thus not renormalized. Plugging
in C7 and C5 into our earlier result for the cross section, one has

a? \2 o
:139(—) 3 29)2 2
Tsor) 3+ o0

6
do-

dQ)

(4.30)
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4.2. Decoupling of heavy flavors

4.2. Decoupling of heavy flavors

The quarks and leptons in the SM appear in three generations. For reasons we do not under-
stand, the masses of the fermions are quite hierarchical m; < my < mg, e.g., me = 0.5 MeV,
m,, = 106 MeV, m; = 1777 MeV. An important generalization of the Euler-Heisenberg EFT
is the EFT obtained from integrating out heavy flavors. For QED at different energies, one
uses

FE 2 mr £QED[T7H767A]
!
mr 2 E Z mﬂ EaﬁED[Ma €, A]
1
my 2 E2Zme 'C?QHED [67 A]
1
Me Z E »CEuler—Heisenberg [A]

Since M ~ my,, one needs also to consider strong interaction effects once one includes the
muon in the Lagrangian, but we will ignore this complication for the moment and start with
‘C?QHED [, e, A] and construct ngED [e, A]. We will then discuss how this Lagrangian can be
used to search for physics beyond the SM and how the analog construction works in the QCD
case.

4.2.1. Heavy flavors in QED
The leading-order Lagrangian EaﬂED [e, A] is just the QED Lagrangian

Larp = (i —me)y — iF"”FW’ (4.31)

which contains the two parameters e and m, to be determined by matching. At higher orders,
we get the same photonic operators as in the Euler—Heisenberg case. In addition, there are
now operators containing fermion fields. Up to operator dimension d = 6, we have

T;Z_)FMD;HZJ’ ’(Z)FMVD,LLDZ/w’ &FMVPDMDVD,D@Z)) @Z_}FIQMZFQ'@Z% (4'32)

where the I' are arbitrary Dirac matrices. At d = 4, the only possibility is ilpy). At d =5
one has

O1 = 31,1 1Du Db = $(—io™) 1Dy, Do (43
— S Fyu, (4.3
02 =0 517" 7"} DuDit, (1.35)
e
9uv

where we used Eq. (4.3) for the covariant derivatives. O; + Oy = ¥/ IDI)1) can be eliminated
using the quark-field EOM 7Pt = ma), so we only need to consider one operator, e.g., Oy. It
turns out that the Wilson coefficients of O; vanishes for m, = 0. The reason is that Lqrp
has a symmetry ¢ — €', 1) — e for m, = 0 and O; violates this symmetry. So we
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4. The Standard Model at low energies

only need to consider the d = 6 operator Opag = mO1 = meiﬁo“”FWw. As a side remark,
we note that the axial symmetry ¢ — €51} is not a symmetry of the theory, but only of the
Lagrangian because the path-integral measure is not invariant. However, the measure for v is
the same in the full and effective theory, so the axial anomaly does not affect our argument.

At d=6, we have operators with three covariant derivatives on the fermions as well as the
four-fermion operators

O(n) = VL ()T ()1 (4.36)

with ') = yleryaz - yanl (totally antisymmetrized) at d = 6. Symmetric products are
sufficient because symmetric products can be reduced using the Dirac algebra {,, v} = 29,
Because of axial symmetry, the terms with even n will have coefficients o« m. and contribute
at the same level as d = 7 operators. In d = 4, there a are only 16 independent Dirac matrices
and products of more than four Dirac matrices can always be reduced. However, this is not
true in dimensional regularization where d is kept arbitrary. The extra operators not present
in four dimensions are called evanescent operators. While their matrix elements vanish in
d = 4, they need to be included to renormalize the theory consistently, see e.g. [9]. Here, we
will not discuss this point further. The operators with three covariant derivatives all reduce
t0 Omag and O(y) using the leading-power EOMs

iy = map (4.37)
OuFu = ey’ (4.38)

Note in particular that
Qz)aaFuV’Y[#’YU'YU}Q;Z) =0 (439)

from the Bianchi identity. Accordingly, we conclude that, up to terms suppressed by at least
m;?’, all effects of physics at scales ' < m, can be absorbed into the electron mass and the
electromagnetic coupling, as well as the Wilson coefficients of Omag, O(1), and O).

Let us now discuss the physics associated with Opae and how the effects of physics be-
yond the Standard Model manifest themselves in Cl,,g. For this purpose, we consider the
interaction of an electron with a background electromagnetic field

= u(p2)T" (p1, p2)u(p1) x (—ied,), (4.40)

p1
where the independent Dirac structures are

T* = Ay" 4+ B(p1 + p2)" + C(p1 — p2)* + A'v"y° + B'(p1 + p2)'y° + C'(p1 — pa)*y° . (4.41)
The coefficients A’, B’, C’ are zero because of parity invariance of QED. Additional structures

involving p, or p, can be eliminated using the EOM pu(p) = meu(p). The coefficients are

scalar functions and depend on ¢?, where ¢ = py — p1, and p? = p3 = m2. Furthermore,

current conservation implies

0 = (e(p2)| i0,* e(p1)) = ¢"tu(p2)Tpu(pr) = C¢* = C = 0. (4.42)
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4.2. Decoupling of heavy flavors

We are thus left with two functions A(¢?) and B(q?). It is customary to write I'* in the form

2
I = BP0 + o

o' q, Fy(q%) . (4.43)

e
At tree level in the EFT, we have F(¢%) = 1 and Fy(q?) = Cagm?, where we wrote

Cmag Crnag

4

Emag = Omag = meZZ_JO'MVFHy@ZJ . (444)

In QED Fi; =1 at tree level, while F5 is only generated by loop contributions. To understand
the meaning of F; and F3, let us consider the non-relativistic limit p1, p2 — 0. In the basis

o <1l _]1> | o <ai ffi) , (4.45)

u(p) = V0 + me ( o ) = V2m, <>f)> +0(p). (4.46)

pOFme Xs

one has

Moreover, using the Gordon identity

p1 + p2)* (Y
( 12m 2) +o ot qu]U(m) (4.47)

a(p2 )y ulp) = a<p2>[

we can replace the v* term in favor of (p;+p2)*, which is easier to handle in the non-relativistic

expansion
p1+ p2)¥ _
Au(Qm)U(pz)U(m) = 2m.AxIxs + O(p?), (4.48)
e
and
Ayii(pa) =" g, u(p1) = Asii(pa) — ', +]agjupr)
H 2Me v ! dme "’ J
~ A k. o ijk
o —4Tr;2mexl,0 Xs2i€7%q; (4.49)
= —iAiqixlonxse?*

= _XZU ' B(q)X87

where By(q) = —ie"*q;A;(¢)= (V x A(q)), and we used [0, 07] = 2ie/*o*. In the first line,
we dropped [y¢,7°] since it mixes the upper and lower component of the spinors and is thus
suppressed by O(p) compared to [y*,77]. The QM Hamiltonian describing the interaction of
an electron with an electromagnetic field contains a term

e

H=—g.; S B=—u B (4.50)

e

For an electron S = ¢, and comparing with our expression for aI'*u(—ieA,) (while accounting
for the spinor normalization 2m.), we find

ge = 2[F1(0) + F»(0)] = 2 + 2F>(0). (4.51)
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4. The Standard Model at low energies

The deviation of the gyromagnetic ratio g. from 2 is called the anomalous magnetic moment

—9
ae = 962 . (4.52)

It receives contributions from quantum corrections and from the operator Oy,ag, Wwhose Wilson
coefficient encapsulates the contribution from heavier states. Because it is sensitive to such
corrections from heavier states, precision measurements of anomalous magnetic moments are
used to search for physics beyond the SM.

Let us take a look at the different contributions to a.. First, there are QED and hadronic
contributions:

= ae = £ =1073 [13] (Even the O(a®) corrections are known [14]!)

—__—

3
=

hadronic — mzACI};%%roniC (obtained from experimental data)

o
& t>§/\ ; SAAA
1
&=
NSN
S
€

Next, there are electroweak corrections:

o o

%
31
S

(& (S

In addition to SM contributions, there could also be physics beyond the SM, e.g., super-
symmetry (SUSY):

mSK\J

K
3R
¥

These contributions decouple with the heavy mass-scale m, but could lead to deviations
from the SM prediction that can be detected in experiment.
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Figure 4.1.: Overview of the experimental measurement and theoretical prediction of the
muon g — 2 as of 2024. The value

Since (me/My)? ~ 4 x 107!, the weak interaction effects are very small for the electron

— 2. The effect of higher-mass particles are typically enhanced by ( ) ~ 4 x 10* in the
muon g — 2. In 2021, the world average after the release of Run 1 data from the Fermilab
E989 experiment [15] differed from the SM prediction in the White Paper [19] by 4.20, which
was seen as a possible hint for contributions beyond the SM. In the meantime, as of 2024,
the situation has become more complicated. With a new measurement [16], the deviation
has increased to 5.10 but at the same time, the picture on the theory side has become
much more complicated. First of all, the first lattice determination of the hadronic vacuum
polarization has appeared [17]. This is not as precise as the data-driven determination, but
the resulting value of g — 2 is closer to the measured value. Furthermore, a new measurement
of the eTe™ — 77~ cross section was presented [18], which would move the theoretical
prediction for g — 2 to a larger value, but is in conflict with earlier measurements. Until these
discrepancies are sorted out, it is difficult to interpret these results.

4.2.2. Heavy flavors in QCD

The QCD Lagrangian with six quark flavors has the form
1 .
Locp = —ZGZVG“V’G + wa(z]ﬁ — mf)¢f (4.53)
f=1

The quark field of each flavor has N. = 3 components and the theory is invariant under
gauge transformation in the group SU(N,) which rotates quarks of different colors into each
other. We suppress the color indices of the quark fields and the covariant derivatives which
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4. The Standard Model at low energies

are defined as
iD,, = 10,1 + gSAZta . (4.54)

Here 1 is unit matrix in color space and the matrices t¢, with @ = 1...N2 — 1 are the
generators of SU(N,). These generators fulfill the commutation relations

[te, %] = ifabete (4.55)

where the structure constants f2¢ encode the group structure. As in QED, the field strength
tensor is defined through the commutator of covariant derivatives

[iD®,iD"] = ig G, t°. (4.56)
but in contrast to QED, it also contains a term quadratic in the field

GY, = 0, A% — 0,AY + go f° AL AL (4.57)
which leads to three- and four-gluon interaction terms in the Lagrangian (4.53). It is useful
to define
_ 921

47
in analogy to the fine-structure constant in QED. In QED, one often uses a physical coupling
« defined through the interaction of electrons at very low energies. Such a definition does not
make sense in QCD. The coupling a,(p) is instead defined in the MS scheme. As in the ¢*
example discussed in Section 3.5, the coupling fulfill an RG equation

dovs (1)
dp

avs(p) (4.58)

= Blas(p)) (4.59)

which can be used to relate the values of the coupling constant at different scales p.

The quark masses are very hierarchical and for many applications, one will need to integrate
out the heavy flavors m; ~ 173 GeV and m; ~ 5GeV. The masses of these quarks are
large enough that the matching can be performed perturbatively. For the charm quark with
me =~ 1.3GeV, as(m.) ~ 0.32, this is still true, but the corrections will be quite significant.
Let us discuss the effective theory obtained after integrating out the top quark. The d = 4
effective QCD Lagrangian has the same form as the original QCD Lagrangian, except that
we now only include 5 flavors:

5
1 oy
Loz = =7 GG + > g (1D — mp)iy. (4.60)
=1

If one neglects higher dimensional operators, the effective theory after integrating out quarks
is simply QCD with one less flavor. Note that the QCD coupling runs differently for the
ny =5 and ny = 6 theories:

dovs (1)
dp

Blas) = =20 [Bo(z;) + B (Z—;)z 4. ] (4.62)

= Blas(p)), (4.61)
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4.2. Decoupling of heavy flavors

Figure 4.2.: Leading contributions to the Wilson coefficients of O;), Omag and O3 when
integrating out the top quark.

with Bp = (11Ca — 4nsTr)/3 and B = 2[17C% — nyTr(10C4 + 6Cr)]/3. If one goes to
higher loop orders, one also has to perform a nontrivial matching computation to obtain the
coupling constant « in the low energy theory without the heavy flavor from the one at higher
energies which includes it, as will be discussed below.

However, let us first discuss higher-dimensional operators in the effective theory. All the
operators found in QED are also allowed in QCD, so if one includes higher dimensional
operators then at d = 6, we find the same four-fermion operators as in the QED case, but
with two different color structures, a first one, where the quark bilinears are in a color singlet
(S) configuration

Ofécz) P AP Ay g (4.63)

and a second one, where they form a color octet (S)
Ofévz) - "‘ﬂft“ [ .. .'Yui]wflzf/ta’y[ul e ")/m]’(/)f/. (464)

This second structure is the same that arises if one starts with O, g@ and exchanges a gluon
between the two quark bilinears. Since the Wilson coefficients of the operators with ¢ even
will be suppressed by quark masses, it is again sufficient to consider ¢ = 1 and ¢ = 3 at
dimension 6. , )

Since QCD does not distinguish the flavors,® the Wilson coefficients of O{g;), O{O{.) are
independent of the flavor indices, i.e., we only need the two operators

_ 7
Z O( 1Y O0i) = Z O/l (4.65)
£

Asin QED, we also get a magnetic operator (which is called chromo-magnetic, since it involves
the gluon field)

Omag = me&fO"uVGzyta(/Jf, (4.66)
but there is one additional operator not present in QED, namely
= G, Gy Gt (4.67)

which arises from the non-Abelian nature of QCD. The leading contributions to the Wilson
coefficients of these operators originate from the diagrams shown in Figure 4.2.

3Except for the quark masses, which can be set to zero for the matching computation
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Figure 4.3.: Running of the strong coupling constant a,(u) obtained using the RUNDEC pack-
age [20,21]. The right plot shows the transition from QCD with n;y = 4 quark
flavors to QCD with ny = 3 at the matching scale p,;, = m. = 1.6 GeV. The
discontinuity arises from (4.71).

Let us now discuss the matching for £;_4, which contains as Wilson coefficient the coupling

2
constant gs and my, and concentrate on o (p) = 7934(:)

to distinguish o in the theory with ny = 6 from ag5) () in the theory where the top quark is
integrated out. Then we proceed as in our scalar toy model. At a scale u,, = m; one derives

a matching relation

. We denote the coupling by aﬁ”f )(u)

O‘gs) (m) = O‘gﬁ) () 521 [agﬁ) (Mm)] ) (4'68)

which gives the coupling constant in the low energy theory with ny = 5 as an expansion of
the one in six-flavor QCD. The simplest way to obtain £4 is to compute the gluon propagator
in both theories. The pole term in the propagator has the form

,L'ZOS
Guw(q?) = T;‘(—gw +..) (4.69)
where Z is the gluon on-shell wave function renormalization constant. Rescaling the coupling
by £4 is the same as rescaling the gluon field. One can then show that

0s,(6)
0) ZA . 0s __ 1
£y = 2287(5) with Z% = T=TI0)’ (4.70)

where II(0) is the polarization function evaluated at virtuality ¢> = 0. If one chooses i, =
my () the expression for {4 is especially simple

Ealmy) =1+ (1330F = 3920A>TF <O‘(£:t)>2, (4.71)

where Cp = (N? —1)/(2N.) = 4/3, C4 = N, = 3 are the Casimir invariants of the funda-
mental and adjoint representations, respectively, and Tp = 1/2 is the normalization of the
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4.3. Effective weak Hamiltonian

generators. The running coupling at low values of p is shown in the left plot in Figure 4.3.
The right plot in the same figure shows the transition from QCD with a dynamical charm
quark to the effective theory obtained by integrating out at p,, = m. = 1.6 GeV. The jump
in the coupling is due to the matching correction in (4.71). Plotting this jump is slightly
misleading since the coupling constants above and below p,, = m. belong to different theo-
ries. The matching correction (4.71) is obtained by ensuring the two theories give the same
result at u = m¢; while the number of flavors ny and «ay are discontinuous at this point, the
observables in the two theories agree and are of course continuous under variation of pu.

4.3. Effective weak Hamiltonian

Let us now discuss the weak interactions at low energies. In the SM, the weak and electro-
magnetic interactions are described by a SU(2)r x U(1)y gauge theory, which is broken down
to U(1)em by the Higgs mechanism, which gives masses to the W= and Z° bosons. A detailed
introduction to the SM is beyond the scope of this lecture. The only information needed for
our discussion is the charged-current coupling of W bosons to fermions. It has the form

92 gt et
Lo = —L2(JTWH 4 W H), 4.72
Nl AW (472)

where
= () = @d)v-_a+ (@ )v—a+ @ )v_sa+ Te)v-a+ Tup)v—a + (ZrT)v_a (4.73)

and (ad)y_a = uy,(1 —5)d’, etc. The quark fields d’, s, and " do not correspond to mass
eigenstates, i.e., the quadratic part of Lgy is not diagonal. The Cabibbo-Kobayashi-Maskawa
(CKM) matrix connects (d’, s', b') to the mass eigenstates (d, s, b)

d Vud Vus Vub d
SN V= Vea Ves Va s|=Vexkm | 5] - (4.74)
v Viae Vis Vi b b

The matrix is unitary, so VCKMV(;KM = 1. It can be further simplified by phase redefinitions
of the fermion fields in L. and has 3 x 3 — (2 x 3 — 1) = 4 physical parameters. Its structure
is reflected by the Wolfenstein parameterization, which was designed to show the hierarchy
of the different matrix elements:

2 .
A =¥ AN
Vexka = -\ — )‘7 AN2 + O()\ ), (4.75)
AN(1 —p—in) —AN? 1

with
A~ 0225, p=~0.139, A~081, n=~0.342.

This form is only approximately unitary, up to higher orders in A. The parameters of the
matrix correspond to three rotations and one complex phase, which leads to C'P violation.
Similarly, the neutrinos v, v,, and v; are not mass eigenstates. The corresponding mixing
matrix is called PMNS matrix (Pontecorvo-Maki-Nakagawa—Sakala), but does not play a role
in what follows.

93



4. The Standard Model at low energies
d U d U
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Figure 4.4.: Expanding the W propagator at small external momentum yields four-quark
operators.

Let us first work at tree level and neglect QCD effects. Then the effective weak Lagrangian
can be obtained by integrating out the W* and Z fields. The resulting effective Lagrangian
is

2
_ 92 — 74 1 — v v +
£eff__8M5V |:J/U'J +M7‘%VJM (8“3 —g’u D)Jy +:| (476)
where ¢ ]\952 = % defines the Fermi constant Gp = 1.166 x 107° GeV 2. Diagrammatically,
w

this arises from expanding the W-propagator in the weak interaction diagrams for small
external momentum as

—3 p“p”} i [ 5 1 5 9 1
- 9" — = — 9" — —5 W'D —p*¢")+ O — || » (4.77)
p? — My, [ Mg | Mg, Mg, My,

so that already the leading terms in L.g are irrelevant operators of d = 6 (recall that the
fermion field has d = 3/2). Indeed the coefficient of the four-fermion operators Gp ~

i
shows the expected behavior. The fact that these are not marginal or relevant operators
explains the apparent weakness of the interaction at low energies. At high energies, on the
other hand, the weak-interaction effects are as strong as electromagnetic interactions. Because
of the M% suppression, the leading-order d = 6 terms are good enough for most applications.

w
Since it changes lepton and quark flavors, L. governs all decays of heavy leptons and hadrons,
such as

pwoo— e + U+,
T =+ Uy, (4.78)
n—p+e + ve.
The Particle Data Group (PDG) lists hundreds of pages of various hadron decays [23]. In the
SM all such decays that proceed via the weak interactions are governed by G and the four
parameters in the CKM matrix. If one manages to evaluate the strong-interaction effects in

such decays, they offer many opportunities to search for physics beyond the SM. An important
step is to include QCD corrections to the effective Lagrangian. To do so, one has to

1. include a complete set of operators, not only those present at tree level,

2. perform a matching computation to obtain the Wilson coefficients,
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d 1 d 1

u v u 14

Figure 4.5.: One-loop QCD corrections in the SM and in the weak effective theory. The figure
illustrates that the corrections are identical in both theories.

3. solve the RG equation for the coefficients to resum large logs.

We will now discuss two examples that illustrate how the construction works in the general
case.

4.3.1. Leptonic decays

Let us consider the operator relevant for 7= — =~ + v, which is based on the quark-level
transition #d — v,u~. The tree-level Lg is

Leg = —?/gvud(ud)V_A (ﬂVu)V—A- (4.79)
It turns out that this is the only operator with this flavor structure: the weak interactions
only couple to left-handed fields ¢, = %(1 —75)¥ and the QCD interactions conserve helicity
for vanishing quark masses Lqocp = Yril)r, + Yrilpyr. Chirality-violating operators are
suppressed by powers of the quark masses. The only possible Dirac bilinears are 1y =
—pry*yPyr and pripr, = o4y, = 0. This leaves only the operators

uryMdr prLypve = uryMve pryudr- (4.80)

The fact that the two operators are equal is an example of Fierz identities, which follow from
a rearrangement of the Dirac structures.

Not only is there just a single operator, but also the matching is trivial since all QCD
corrections are the same in the full theory and the effective theory, see Figure 4.5. Accordingly,
there are no QCD corrections to Leg. QCD effects only arise in the matrix element

— (0] uy"ysd |7 (p))
= —ifp" = —iV2Fp". (4.81)

(0] @(0)y"(1 = 5)d(0) |7~ (p))

Since the matrix element is a Lorentz vector and only involves a single vector p* it must be
proportional to it, and since p? = M2 is constant it cannot have any kinematic dependence.
The quantity F is called the pion decay constant. By measuring the pion decay rate

G¥ o o m; 2
[(m — uv) = EFﬂmuMﬂ <1 — ]\/[l;> |Vad| (4.82)
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4. The Standard Model at low energies

one can then determine the combination |V, 4| F. Similarly, one obtains |V 4| from D™ — p~ v,
|Vip| from B~ — 770, and |V,s| from K~ — p~ 7, in combination with the respective decay
constants. To turn the measurement of the decays into determinations of the CKM matrix
elements, one needs independent computations of the decays constants which can be obtained
using lattice QCD, see [22] for a compilation of such results.

4.3.2. Hadronic decays

Let us consider next the decay B(©) — Dy 7", based on the b — ucs quark-level transition.
In this case, there are two operators that differ by their color structure

_ & i =] J
O1 = 8y yucpupy!'oy,

. S , (4.83)
Os = sy a0y,
where the color indices 7 and j are summed over. Note that
SLY taCLﬂL’y”tabL = 102 — L01 (4 84)
# 2 2N, ‘
which follows from the identity
0.0 1 1
tijtht = 5 | Qadjk — 70 On (4.85)
C
for the SU(3). generators.
The low-energy effective Lagrangian for the b — ucs transition thus takes the form
AGp _
Log = —TQFVCSVub |:Cl (,M)Ol + CQ(,U/)OQ} , (4.86)

where the coefficients encode the high-energy QCD corrections. Depending on the quark tran-
sitions under consideration, the weak effective Lagrangian will contain more operators. Our
Lagrangian is particularly simple because it does not get contributions from neutral current
interactions since all four quark flavors in the operator are different. A review of the relevant
Lagrangians can be found in [27] and a pedagogical introduction in [26]. The Lagrangian
(4.86) is the simplest example to discuss the matching and renormalization in a case where
we have several operators with the same quantum numbers. This is interesting because the
different operators mix under renormalization, which is also reflected in the associated RG
equation. This provides us with a nontrivial example of RG improved perturbation theory
discussed in Section 3.5.

Let us start with the matching of the full onto the effective theory. At tree level one
has C; = 1 and Cy = 0, which follows from the same argument as in the leptonic example
discussed before. To obtain the one-loop coefficients, however, one has to perform a matching
computation, i.e., one has to compute the b — ucs transition in both the full and the effective
theory. In Figure 4.6 we show the associated one-loop diagrams in both the full and effective
theory.

The difference between the full and the effective-theory results is absorbed into C7 and Cs.
Since C1, Co are independent of my, we can set all quark masses to zero. Furthermore, also
any values for the external momenta will work, with the simplest choice p; = 0. In this case
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4.3. Effective weak Hamiltonian

b U Full theory

¢ (a) s (b) (c)

+ ”mirrored” diagrams

EFT

(a) (b) (c)

+ "mirrored” diagrams

Figure 4.6.: One-loop diagrams in the matching of the b — ucs transition onto (4.86).

diagram (a) in the full theory and all diagrams in the effective theory vanish, because they
are scaleless

11.1 1 1
d%k—-T-T=0= — — — 4.87
/ K2k K €UV €R (4.87)

which amounts to a cancellation of IR and UV divergences in dimensional regularization.
Since the IR divergences are a low-energy property of the theory, they are present in both the
full and the effective theory, and thus cancel in the matching. We will keep the p; non-zero,
but use the same value for all legs. This makes the all matrix elements infrared finite, which
has the advantage that we can also extract the renormalization factors from our computations.

Let us start with diagram (b) in the full theory
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4. The Standard Model at low energies

s
B Z.QGFMEV . / dik —i  —i i i
vz e em PR R - MR, (p+ k)P (p— k)’
X ay*(1 = 5) (P + K)igst®yPb x 57" (1 — v5)(p — K)igst®y7c (4.88)
-
9po |Guv — =5 |-
P H MI%V

Some remarks are in order:

1. We compute amputated Green’s function but write down external spinors @ul'1bsI'sc to
remind ourselves which color and spin index goes where.

2. We are using Feynman gauge for QCD and unitary gauge for the W-propagator. The
kHEY /Ma, term does not contribute to the sum of the diagrams, so we will omit it.

3. The color structure is t* ® t*. To rewrite this in the form of O and O,, we use the
identity (4.85).

4. To simplify the Dirac structure one needs identities such as [I' = y*(1 — ~%)]
Ty, @ TyP4* =160 @ T (4.89)

The coeflicient can be derived by taking traces TI“[AF’)/B’Y#BF’)/B’)/M], Tr[AT' BT for some
Dirac matrices A and B, e.g., A= B = ~°.

5. Without the k*k" /My term, the diagram is finite, so we only need its value for d = 4.

The diagram (b) in the effective theory, on the other hand, is divergent, as it behaves like

11 1 k1 u?
dik————  ~ [ 2~ =t log . 4.
/ Rp—kp+hk /k4 e T8 s (4.90)
This leads to some technical issues:

1. The Dirac basis can be thought of as all totally antisymmetric products of « matrices.
In d dimensions, one can also write down antisymmetric products of more than four
~ matrices, which are not necessary in four dimensions. Operators with such Dirac
structures are called evanescent. One can use a renormalization scheme in which their
physical matrix elements vanish, but they need to be included in Leg for consistency,
see [9] for details.
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4.3. Effective weak Hamiltonian

2. 7% is special to d = 4. The rule {y#,7°} = 0 leads to inconsistencies in d dimensions. A
prescription to eliminate 4° is the "t Hooft/Veltman scheme [24], which can be thought
of as replacing 5 = —41'!6“,,&57“7"7970, rewriting two epsilon tensors in terms of metric
tensors using (4.20), and only dealing with a potentially remaining epsilon tensor after
renormalization. Alternatively, one can use the so-called NDR scheme (naive dimen-
sional regularization), i.e., use 0 = {¥*,7°} and hope that no inconsistency arise, or
the DRED scheme (dimensional reduction), i.e., treat v* and the gauge fields as four
dimensional. A review of the different schemes can be found in [25].

Let us now discuss the results. The bare Green’s function in the SM and in the EFT are
(d=4—2e):

GrVZiVw as (1 u? 3 « M2
Ffull = \/C%u{ (1 + 20Fﬁ (E + IOg _71)2) <Ol>tree F4S 1 p <Ol>tree

as, M p’
- 3@ log TPQ <02>tree} +0 <M2 ’ (491)

2
b GrVava { Cbare

ag (1 0
/2 (1 + QCFE (Z + log —p2)> (O1)ree

3as 2 2

e ) 0042 L ) O

as (1 pw? 3 as p?
<1 + QCFE (Z + log _p2>> <O2>tree + N 4 ( + 1 0og 7) <O2>tree

}+O<J\]f?>' (4.92)

In each case, the first term corresponds to diagram (a), the remainder to (b)+(c) (and their
N(?*l 4 — gs

mirrored counterparts). The color factors are N, = 3 and Cp = SN = 30 (s = 5

The Wilson coefficients have an expansion C; = C’Z.(O) + %Ci(l) + ..., as reflected by the as
corrections in Eq. (4.91). The bare amputated Green’s functions have ultraviolet divergences,

corresponding to the 1/€ poles. In the full theory, these divergences are removed by the wave-

+ Ogare

12

- 3%<6 +1lo g7> (O1)tree

function renormalization (©) = Z;/ 21/1, with the one-loop wave function renormalization
Zy =1— £=Cp in MS and for Feynman gauge. In the effective theory, there are additional
divergences from (b) and (c), which are not removed by wave-function renormalization of the

Wilson coefficients in L.g. Omitting the overall factor — ﬂVc’;Vub, one has
Lo — GF Ly CbareO 0)y _ CTVF * 2
off = ( ) V V ud Zq CZ'Zz'jOj (q) (4.93)

f CS \/>
The additional renormalization constants form a matriz Z;;. Since the two operators have the

same quantum numbers, they cannot be renormalized separately. The fact that the matrix
7Y one finds

47'{'6 ij

5 _ as _3/NC 3
Z_]1+47T€< 5 —3/Nc> (4.94)

Zi; is non-diagonal is referred to as operator mixing. Expanding Z;; = 6;; + 4
that
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4. The Standard Model at low energies

removes the remaining divergence in I'eg. We see that we indeed encounter operators mixing
so that the two operators cannot be separately renormalized.
From the condition 'ty — I'eg = 0, one can then finally read off C; and Cj:

3 as . M3
o M2
=0—3—log —X. 4.
CQ(N) 0 347_‘_ 0g Iug ( 96)

The crucial point here is that C and Cy only depend on My and p, but not on the low-energy
scale p?. This has to be the case, as the low-energy physics must drop out in the matching.
The last step in the construction of L.g is to solve the RG equations for C and Cy to avoid
having large logarithms when evaluating C(u) at low values of . The RG equations follow
from the fact that physical quantities are p independent. Equivalently, we can use the fact
that bare quantities are y independent:

e, ™) = 0 = i Ci) Zs (). (4.97)
d d
= (“duci(“)) Zij + Ci(p) <'ud,uZij>’ (4.98)
so that ]
M@Cg‘(ﬂ) = Ci() vij(@) = 0, (4.99)
where J
ij = _(M@Zik)zk_jl (4.100)

is the anomalous dimension matrix associated with the two operators. In vector notation
(4.99) can be written as

( d(i —5 )6(,@ =0. (4.101)

In the MS scheme, the Z-matrix is a sum of pole terms
- Ly
=1+) 57 (4.102)
k=1

and there is a simple relation (also known as the “magic relation”) to obtain the anomalous
dimension directly from the 1/e pole of the Z-matrix. It reads

R 0Zp  as (—6/N, 6
¥ =205 47T< 6 _6/N6>. (4.103)

To solve the RG equation, it is simplest to use a basis in which 4 is diagonal, in our case the
corresponding combinations are Cy = Cq £ Co, with

uicion ~226(£1- ) Ca (4.104)
=27:C (p). (4.105)
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4.3. Effective weak Hamiltonian

QCD penguin EW penguin EW penguin

Figure 4.7.: Examples of penguin diagrams. See [29] for details on the origin of the name.

Converting the derivatives using the QCD g function

dOéS Qg Qs 2
— 9a, | % Qs ] 4.1
Wy =20 [4Wﬁo+(4w) By + } (4.106)
we can solve these RG equations by a separation of variables
dCy dp ag dog o dag v+
s = By = — 2= 4. 4.107
Cy u Ar * 6(048)47T7i as 2B ’ ( )
with the result i) W
log o) = g A 4.108
Cx(Mw) 280 (M) ( )
or
as(i) \ 7o
Ci(p) = Cy(Mw) | —~ . 4.109
) = 0w () (4.109)

Using Cy(Myw) =1+ O(as) and rotating back to the original basis we find

S>H

N —

o3[t (o) F]
where 11 5 ]
fo= 5 Ne—zny, ’Yj[:6<:|:1—ﬁc> — 76— 2. (4.112)
Numerically, one finds for u = my
Ci(p) =1.10, Cy(p) = —0.24, (4.113)

so that at the low scale indeed a non-vanishing result for Co has been induced, while the
value of C1 changes by a similar amount. This completes our discussion the QCD effects in
Leg relevant for b — ués, which mediates B — Dy w™.

As mentioned above, the structure of L.g becomes more complicated for flavor-changing-
neutral current (FCNC) processes such as

b— s, b — sg, b — sqq, b— sl (4.114)
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4. The Standard Model at low energies

For such decays so-called penguin diagrams contribute, examples of which are shown in Figure
4.7. The effective theory operators associated with these are obtained by contracting all
internal lines to points.

Such processes are interesting because they can violate C' P symmetry and are sensitive to
new physics because they only arise at loop-level in the SM. The effective Lagrangian for such
processes contains ~ 12 operators, which all mix under renormalization, i.e.,

d T =
— Ao =o. 4.115
[M i) ] (4.115)
Although there is a lot of interesting phenomenology associated with such decays, we will not
discuss them further, but let us note that the corresponding anomalous-dimension matrix has
been calculated at O(a?), which involved the computation of hundreds of thousands of three-
and four-loop diagrams.

4.4. Chiral perturbation theory

Let us finally turn to the strong interaction at low energies. Instead of quarks and gluons,
the observed particles are hadrons, i.e., mesons such as w, K, n, 1/, p, ... and baryons p,
n, A, X, ... The effective Lagrangian is then a function of hadron fields. As in all our
previous applications, one starts by writing down the most general L.g compatible with the
symmetries of the underlying theory, i.e., QCD. In contrast to previous examples, however,
we will be unable to perform matching computations due to our limited ability to perform
QCD computations at low energy (using lattice-QCD simulations, it is becoming possible to
some extent). At first sight, it looks like an effective theory of hadrons and it will be not
very predictive since the Wilson coefficients are not known. However, it turns out that chiral
symmetry severely constrains the interactions of the light hadrons, and the EFT approach is
very useful to derive the consequences of this approximate symmetry.

4.4.1. Chiral Symmetry

Since we will work at very low energies, we can integrate out the heavy-quark flavors and use

1 y . 1
LA = —GwGa” + > q (i) —my)gr + O<m2b ) (4.116)
f=u,d,s ¢,b,t

The theory simplifies further in the chiral limit mq — 0. Since only the mass term dis-
tinguishes different flavors, a new flavor symmetry arises. In fact, the symmetry group is
even larger. To see this we split the fermion fields into their left- and right-handed parts
qr.r = Pr.rq, with P, = %(1 — ), Pr = %(1 + 75). The Lagrangian then reads
eff P ~ . = ~ 1 a v
Loep = Z \ar.filPar.s + ar,silPar,y — ms(qr,qr,f + Qr,raL.f)] — ZGWGg . (4.117)
f

Therefore, in the absence of a mass term, £ is invariant under the chiral transformations

ur, ur,
qr = |dr | = Vo | d | = VLqw, (4.118)
ST, ST,
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4.4. Chiral perturbation theory

qr — VRYR, (4.119)

where Vi, and Vi are unitary 3 x 3 matrices. Let us stress that V;, and Vi are global rotations
in flavor space (which leave colors unchanged), while the gauge transformations are local and
act in color space. Instead of m,, mg, ms — 0, it is also useful to consider the two-flavor
chiral limit m,, 4 — 0 and m, fixed. In this case, the symmetry transformations are

(“L7R> —Vig (“L»R> , (4.120)
dr.r " \dr,Rr

and the transformations can be parameterized as

a

VL,r = exp [iaLﬁ + i(;aaLR] , (4.121)

where the Pauli matrices %, a = 1,2,3, are the generators of SU (2). For the three-flavor

2
. a .
case, the generators are the Gell-Mann matrices )‘7, a=1,...,8% We can then consider
infinitesimal transformations and Noether’s theorem gives a classically conserved current for

each transformation J, oc %5@[):

a
LN = (.YL’YMq[n LZ - QL’VH?QL, ( )
4.122

a
Ry = dryuar, Ry = ary" 5 ar
Instead of left- and right-handed currents, it is convenient to use vector and axial-vector
currents:
VI =L"+ R =qq,
At = R — L' = My

It turns out that A* is anomalous, i.e., 9,A" # 0 due to quantum effects. Anomalies are
a subtle effect in QF'T, where certain classical symmetries are violated by quantum effects.
We will not discuss this topic further in this lecture, but refer the reader to QFT textbooks
such as [30,31]. The anomaly of A* is also called the chiral anomaly or Adler—Bell-Jackiw
anomaly [32,33]. One can compute the divergence of the axial current from triangle Feynman
diagrams and finds

(4.123)

Negs
3272
The non-conservation of the axial current has interesting phenomenological consequences, in
particular, it explains why the lifetime of the neutral pion is much shorter than the one of the
charged pions. We return to this point towards the end of our discussion of chiral perturbation
theory.

The remaining SU(3), x SU(3)g x U(1)y transformations are symmetries of the quantum
theory. With each current, we can associate a conserved charge

9, AP = € upa GLV GP (4.124)

Aa
Qy = [ a5 (4.125)
_ A?
Q= [ #s™ 7 (4.126)

4We stress again that the matrices A\® introduced here act in flavor space not in color space.
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4. The Standard Model at low energies

The 2 x 8 4+ 1 charges Qv, Qf, Q% commute with the Hamiltonian IH of massless QCD
[QF, H] = [Q%,H] = 0. The question is then whether the spectrum of the theory is symmetric,
or whether the symmetry is spontaneously broken. Vafa and Witten have shown that the
vector-like symmetries are unbroken @ |0) = 0 [34]. For the axial-vector symmetry, the
situation is more complicated. Let us discuss the two possibilities:

1. Unbroken symmetry Q% |0) = 0: in this case, the spectrum contains degenerate multi-
plets of G = SU(3)y x SU(3)a.

2. Spontaneously broken symmetry Q% |0) # 0: in this case only multiplets of SU(3)y C G
appear in the spectrum, and for each broken generator a Goldstone boson arises.

The second case is realized in nature. The statement that the spectrum contains a massless
boson for each broken generator is Goldstone’s theorem [38,39]. A naive derivation of this
theorem is obtained as follows. Since [Q%,H] = 0 we have

HQ4 [0) = Q4 H|0) =0. (4.127)
but Q% |0) # 0, so there is a nontrivial state

Q4 10)

with zero energy for each broken generator, i.e. a massless particle. This state inherits
the quantum numbers of Q% so it is a parity-odd, spin-0 boson. Unfortunately, this simple
argument has a flaw:

(01Q4Q4 [0) = / & / @y (0] A3(z) Ab(y) |0) (4.128)
= /d3x /d3y F(z —y) = o0, (4.129)

so the “states” Q% |0) have infinite norm.
A rigorous proof of Golstone’s theorem is obtained by analyzing the correlation function

(0 1Q4(t), P*(t,¥)]10) . (4.130)

Inserting a basis of states and using current conservation, one can show that if this matrix
element is non-vanishing, then the theory contains a massless particle with the same quantum
numbers as the operators P* = cj)‘Q—a%q. A general proof of the Goldstone theorem based on
the analysis of the above commutator is presented in the classic paper [40]. An Appendix
with the derivation for our specific case can be found at [41].

For the specific case of symmetry breaking under consideration, the matrix element (4.130)
can be simplified using the equal time anti-commutation relations

(Yo (t,%), 0% (£, y)} = 60pdrad P (x — ),

(4.131)
{@Zjaﬂ" (t7 X)a ¢ﬁ,8(t’ X)} =0.
The commutator has the form
[ab, cd] = a{b, c}d — ac{b,d} + {a, c}db — c{a,d}b. (4.132)
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4.4. Chiral perturbation theory

The matrix element (4.130) is nonzero only for @ = b. Evaluating it for this case with a fixed
value of a we get

[A§(x,0), P*(y,0)] = qT(y)v5§5(3) (x — Y)’YO’Y5§Q(?J) — qT(y)7°757a5(3) (x— Y)75§Q(y)
= _2q(A“)2 53 (x —y). (4.133)

Because of SU(3)y invariance of |0), one can average over the components,® leading to

(0114 P*(@)]10) = —5 3 5 0laal0) (1131)
b

= 2 (0l4a]0) (4.135)

- —é (0] @ + dd + 55 |0) (4.136)

= — (0] au |0y, (4.137)

where we used the fundamental Casimir operator Y ,(A%)? = 4Cp1 = £1. The quark
condensate q¢ = qr.qr + Grqr, breaks chiral symmetry.

A non-vanishing quark condensate implies that chiral symmetry is spontaneously broken
and that there are 8 pseudoscalar Goldstone bosons. Since the quark masses are non-zero,
chiral symmetry is not an exact symmetry of QCD. On the other hand, the u-, d-, and s-quark
masses are small, so one can treat the mass term of QCD as a perturbation. Looking at the
spectrum, one finds that three mesons 7%, 7% are quite light, M, ~ 140 MeV, and nearly
degenerate. Since they also are parity-odd and have spin zero, it is plausible that they are
the SU(2) triplet of “Goldstone” bosons associated with the spontaneous breaking of chiral

symmetry in the Y sector:

d
SU(Q)L X SU(2)R — SU(Q)V. (4.138)

Since the small mass-term breaks the symmetry explicitly, they acquire a small mass. For this
reason, they are called pseudo Goldstone bosons. The lowest-lying eight mesons 7+, 7=, 79,
K*t, K=, K° K° and n have J” = 07, and so match the pattern of symmetry breaking for
SU(B)L xSU(3)r — SU(3)y. If chiral symmetry were unbroken, one would expect multiplets
of the full symmetry group: for each parity-odd meson, there should be a (nearly) degenerate
parity-even partner. From these considerations, and from the fact that chiral perturbation
theory is very successful in describing the low-energy phenomenology of QCD, one concludes

that chiral symmetry is indeed spontaneously broken.

4.4.2. Transformation properties of Goldstone bosons

In order to construct the most general effective Lagrangian, we need to know how the
Goldstone-boson fields 7 transform under chiral symmetry. Usually fields ¢(x) transform
linearly, as a representation of a symmetry group ¢ — M (g)¢. Under such a transformation
the classical vacuum ¢(z) = 0 automatically maps into itself. This is not appropriate for the

®Formally, this can be derived by considering the analogous commutator [Q%, S°].
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4. The Standard Model at low energies

case of spontaneously broken symmetries, where the vacuum transforms in a nontrivial way.
Indeed, for Goldstone boson fields, the symmetry is realized non-linearly, as we will now see.
More details on the Callan, Coleman, Wess, and Zumino (CCWZ) construction [42,43] that
underlies the following discussion is provided in Appendix C.

Let us consider first the general case of a group G that breaks spontaneously to a subgroup
H. There are then n = ng — nyg Goldstone bosons, which we collect into an n-dimensional
vector (z). A realization of the group is a mapping

m— 7' =p(g,m) (4.139)

for any g € G. This mapping must obey the composition law®

w(g1, (g2, ) = p(g192, ). (4.140)

Remarkably, this property, together with the requirement that the unbroken subgroup should
be realized linearly, determines ¢ uniquely. To see this, consider the image of the origin
p(g,m = 0). The elements h € H map the origin onto itself ¢(h,0) = 0, since H is linearly
realized. Moreover

p(gh,0) = p(g9,0) VheH, (4.141)

so that ¢ is defined on the coset space G/H. It maps an element of G/H into the space
of Goldstone fields. Furthermore, the mapping is invertible since ¢(g1,0) = ¢(g2,0) implies
g1H = goH. To see this, assume ¢(g1,0) = ¢(g2,0) and consider the identity e of the group
and note that

w(e,0) =0= (g7 '91,0) = (g7, ¢(91,0)) = (g7, (92, 0)) = (g7 '92,0) = 0,

and therefore g;° Ygo € H, i.e., g1H = g2 H, see Appendix C. Accordingly, the function ¢(g,0)
provides a one-to-one mapping between the coset space G/H and the values of the 7 field.
The transformation of the field follows from the action of g € G on the coset space. The only
freedom left is the choice of coordinates on G/H.

Let us now consider G = SU(2);, x SU(2)gr = {(V1,VRr)|VL € SU(2),Vr € SU(2)} and
the unbroken vector subgroup H = {(V, V)|V € SU(2)}. The coset space associated with an
element ¢ is the set gH = {(VLV,VgV)|V € SU(2)}. To parameterize G/H, we select one
element of each set gH. A possible choice is U = VRVLT, since

(VLV,VRV) = (1, VRV (VLV, VL V). (4.142)
N’

€H

The transformation law of U under G is
U — VRUV] (4.143)

for g = (V1,Vg). In a final step we need to parameterize U(z) € SU(2). One can use the
standard parameterization

U(z) = exp [f;fa} — exp [} ( fgi_ ﬁ”;)} : (4.144)

—T

SIn general ¢ is not a representation, since it is not linear ¢(g, A) # (g, 7).
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4.4. Chiral perturbation theory

where we have rewritten the pion field in the linear combinations with definite electric charge.
The factor F' was introduced to obtain a dimensionless exponent, but it will correspond to
the pion decay constant. One could have chosen a different parameterization, e.g., for the
SU(2) case often the co-called o parameterization

Uz) = /1—n2/F2 + %a‘ o (4.145)

proves beneficial. The 7w-fields of the two different parameterizations are related by a field
redefinition, under which the physics remains unchanged. For SU(3), the standard parame-
terization is

U(z) = exp [;_,Xlﬂ“] = exp L Vor— =m0 4 %77 V2K° ) (4.146)
T ST L

To understand why the field are parameterized in this way, one needs to consider the quark-
mass term and the coupling to photons, to which we will turn in the next subsection.
4.4.3. Effective Lagrangian

Now that we know the transformation properties of the Goldstone bosons, it is straightforward
to write down the effective Lagrangian in the chiral limit m, = 0. After this we will have to
implement the symmetry-breaking terms involving the quark masses.

Under a chiral transformation U — VRU VLT , so we need to find an effective Lagrangian
Leg(U) that is invariant under this transformation. Since U(z) is dimensionless, the terms
with higher orders of U(x) are not suppressed, so instead we order terms by derivatives

Leg = fo(U) + f1(U)DU + fo(U)0,UMU + -+, (4.147)

where for now we have ignored the flavor indices, which will have to be contracted later. We
observe:

1. Chiral symmetry implies fo(U) = fO(VRUVg). Choosing Vg =1, Vz, = U, this leads to
fo(U) = fo(1) = const. Therefore, terms of order O(1) in the derivative expansion only
give an irrelevant constant that can be dropped.

2. The fi-term can be absorbed into fs using integration by parts
/ dzf(U)OU = — / d*z f1(U)0,U"U, (4.148)
3. We can rewrite the remaining term as
Lo = f(U)DUMU = f(U)ALA*  with A, = (8,U)UT, (4.149)

and the quantity A, transforms as A, — VRAMV; and is invariant under V, transfor-
mations. Choose now Vj, = U and Vi = 1 under which this term transforms to

FOALAY = FUVHALAF = F(1)A, A" (4.150)
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4. The Standard Model at low energies

The last question is how the indices of the matrices A, are contracted. The only possibility
to ensure invariance under Vg is

Leg = C - Tr[A,AM] = C - Tr[(8,U)UT (9*U)UT] (4.151)
= —C - Tr[0,UUU"UT) = —C - Tx[9,U0*UT] (4.152)

2
= FzmauUa“UT], (4.153)

where the prefactor has been chosen to get canonically normalized kinetic terms for the pion
fields. To see this, we now expand

1 i 1, 5
U(x) = exp [fﬁ-a} =l+5mo— oo l+0(r), (4.154)
leading to
F? 1 1
[ pp— - a QL b ab 3 _ _ = m 3
Lot 1 ( F28“7T otm )25 + O(7?) 5 ot + O(7°). (4.155)

The effective Lagrangian has several remarkable properties:
1. one parameter F' determines all w-interactions,
2. symmetry requires interactions with arbitrary many pions,
3. derivative couplings: the interactions vanish if the momenta go to zero.

So far, our effective Lagrangian is only valid in the limit m, = 0 and we should now also
implement the quark-mass terms that break the symmetry:

Ly = —qrMqr, — G Mg, (4.156)
with
m, 0O 0
M=]0 mg 0]. (4.157)
0 0 mg

Note that L£j; would be invariant if M transformed as M — VpM VLT . This property can
actually be used to construct L.g(U, M): one treats M as an external source in the QCD
Lagrangian (4.156) that transforms as M — VRMVp (a so-called “spurion” field). Leg must
then be invariant as well. Expanding in M, the lowest invariant term is

F2B,

Esymmetry breaking = TI"[MUT + MTU] . (4158)
After one has constructed an invariant Lagrangian, one then inserts the actual matrix M in
(4.157) into the Lagrangian. This term gives a mass to the pions, which becomes obvious
after expanding in the fields. For SU(2) one finds

F?By

I 5 By 2 M2 ,
Lsymmetry breaking = 5 Tr[M]( — ﬁﬂ' ) = —?(mu +mg)we = —771' , (4.159)

from which we conclude that the masses of the pions are equal and proportional to the sum
My, + My.
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4.4. Chiral perturbation theory

To relate the quantity By to a QCD matrix element, we again treat M as an external source
M = [M(z)];; and then take a functional derivative of the full and effective theory partition
functions with respect to the source

)

7 30 () 2acp = ~ Ol ani@)ar;(2) + Gr;s(2)asi(@) 0}, (4.160)
I F2B
i oMy (@) 2T 2 2 (01 (U1)i(x) + Uy () [0) (4.161)

The classical action is minimized by 7 = 0, U = 1. Up to pion-loop corrections, we thus have

F?Byi; = — (0] qLiqrj + GrjqL.: 0) , (4.162)
F2By = — (0] 7w |0) = — (0] dd |0) . (4.163)

This shows that By corresponds to the quark condensate in the limit my — 0. Taken together
with the expansion of the pion mass, we find the relation

— (O] au |0)

ME: (my +mg) ( 5
JNu T M) F

explicit breaking
spontaneous breaking

) +0(m2), (4.164)

known as the “Gell-Mann—Oakes—Renner relation” [35]. For SU(2), the three pions have the
same mass because the quadratic term in the expansion (4.154) is proportional to the unit

one finds
M2 (mu—i—md B()—FO( 3
Mps = (my +mg)Bo + O(m
(mg
)

MIQ(O o= (md + Mg BO + O (4165)

1
Mg 3(mu+md+4ms BO+O( )

This explains why M% > M2, because ms > my, mg. Combining the results (4.165) one
obtains the Gell-Mann—Okubo mass formula [36,37]

M? = AME + 3M} = O(m?). (4.166)

To understand how the mesons interact with photons, W-, and Z-bosons, it is useful to

introduce external sources with the appropriate quantum numbers both in the full and the
effective theory. For QCD, we add

Locp = Lo + L4, (4.167)
Lo = —ZGZVG“” + qilpg, (4.168)
L1 = v, Vi + ay Al — Sy — p P, (4.169)
with sources
Ve = ’V“%q, Al = (ﬁ“%%q, Sa = Q%q, Py = di%%q’ (4.170)
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4. The Standard Model at low energies

and one can also include singlet currents via Ao = \/g]l. The external fields vy, (z), af(z),

s*(x), p®(x) can be used to probe different aspects of QCD, e.g., quark masses are included
in s%(z). To construct L in the presence of these sources, one can use the fact that Lqcp
becomes invariant under local transformations

qr(x) = Vi(r)qr(z),  qr(x) = Vr(z)qr(z), (4.171)

provided the external fields transform like gauge fields:

Ty = Uy +a, — Vr(v, + aM)V}g - i(@MVR)V;-E,
Ly = vy — a, — Vi (v, — a,)V] —i(8,V0)V], (4.172)
s +ip — Vr(s +ip)V},
where v, = vﬁ%, etc., and the task is then to construct a locally invariant effective La-
grangian. At leading order, it is sufficient to replace 9,, by the covariant derivative:

iD,U =i0,U + (vy + a,)U — U(v, — ay), (4.173)

where v, a, count as O(p), so that
F? F’B
Lo = TTr[D#UD”UT] + T‘)Tr[XUT XU+ oY), (4.174)

with x = s+ ip and the convention D#UT = (D,U)". We are now in the position to interpret
the second free parameter F'. Let us considere the axial-vector current. In the SM, the
matrix element of the axial current is responsible for the pion decay, see (4.81). To compute
the matrix element of the axial current in the effective theory, we expand

DU = %o’ O — 2ia, % +0O(n?). (4.175)
For the coupling of a single axial-vector current we thus find
F? 4
4 F
Matching to (4.81) shows that F' = F at leading order.
At O(p*) Log has the form [2,3]

l l
LW = Zl(Tr[DMUD“UT])Q + ZQTr[DuUD,,UT] x Tr[D*UD U]

(- au 0'7) = ~Fa,-o'm, (4.176)

I l
+ f(Tr[XUT +Ux)? + fTr[DNXD“UT + D, UDM + - (4.177)

For SU(3) £ has 12 coupling constants, while for SU(2) 10 such low-energy constants arise.
To perform calculations beyond leading order, one needs one-loop graphs from £2), which

also count as O(p?), e.g.,
AQ_ 4 1 2 4
s x [d ka 2 k* o< M (4.178)
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4.5. The Standard Model as an EFT

contributes to the O(mg) corrections in the mass formulae (4.165). In particular, loop
contributions are suppressed by a loop factor 1/(1672) and, for dimensional reasons, by 1/F2,
leading to an expansion in 1/(47F;)2.7 From the loop suppression one thus expects an

expansion in , ) ,
M
X x X
where M and Mg apply to the SU(2) and SU(3) expansions, respectively. The RG estimate
for the scale of chiral symmetry breaking can be compared to the first resonance in the

spectrum, which gives rise to

0.775GeV ~ M, S A, < 4nFy ~ 1.2GeV, (4.180)

and thus a scale around 1 GeV. In practice, the expansion proceeds not just in terms of powers
of Eq. (4.179), but the loop corrections can generate logarithmic dependences on momenta
and masses.

Finally, we mention a complication that appears in the construction of chiral Lagrangians,
which is related to the Wess—Zumino—Witten (WZW) anomaly [45,46]. The point is that
Lqcp and Leg are invariant under local chiral transformations, but the partition function

Zlv,a,s,p) = /Dq DgDA, et [ de(LotLe) — iSenlvias.pl (4.181)

is not invariant if the external sources are non-zero, because of anomalies in the fermion
determinant. Since the effective theory does not involve fermion fields, invariance of L.g
leads to invariance of the partition function. To correct for this mismatch, one needs to add
Leg a term that reproduces the charge of the QCD partition function. This term is called the
WZW term Lywzw. The full effective theory Lagrangian is then

Lo = Liny + Lwzw- (4.182)

The WZW term is O(p*) and does not involve any low-energy constants. In contrast to Liyy,
the terms in Lywyzw contain odd numbers of Goldstone-boson fields. In particular, it contains
a term describing an interaction of two vector fields with a 70, which leads to

2n72 773
a?N2 M3,

oy = “Gamdrz

(Q2 — Q%)% = 7.749(15) eV. (4.183)
The good agreement with the experimental value 7.802(117)eV [47] is sometimes sold as
evidence for N. = 3. However, Bir and Wiese pointed out that Q2 — Q?l = N% for N, colors
(to ensure anomaly cancellation in the SM), so that the rate does not depend on N, [48].
The 7¥ decay is much faster than the one of the charged pion because it is mediated by
strong/electromagnetic instead of electroweak interactions.

4.5. The Standard Model as an EFT

We have now covered (almost®) all sectors of the SM and discussed the corresponding EFTs.
In particular, we have worked our way up in energy and have integrated out heavy leptons,

"This argument can be made more rigorous in terms of the renormalization group [44].
8Heavy-quark EFT requires a non-relativistic formalism, see Chapter 5.
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4. The Standard Model at low energies

quarks, and gauge bosons. In each case we wrote down the relevant operators up to d = 6.
In all cases, the main motivation for the EF'T approach was either to simplify calculations in
the SM or, as for strong interactions at low energies, to actually make analytic calculations
possible.

Going one step further, one could also consider the entire SM as an EFT, i.e., assume that
all potential new particle arise above the scale of electroweak symmetry breaking and can thus
be described by effective operators that obey the SM gauge group SU(3). x SU(2), x U(1)y.
While there is only a single operator at d = 5 (related to neutrino Majorana masses), there are
many possibilities at d = 6, and finding the minimal set is non-trivial. A complete set was first
written down by Buchmiiller and Wyler [49]. However, the minimal set was only constructed
in 2010 [50], comprising 15 + 19 4+ 25 = 59 different operators (bosonic, two-fermion, and
four-fermion, respectively). If baryon number is violated, four additional operators appear.
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5. Non-relativistic effective theories

We have considered several EFTs that are obtained by integrating out heavy particles. How-
ever, in many cases heavy particles are present even at very low energy. The reason are
conservation laws for particle numbers such as lepton number conservation (L = L,- — L.+)
and baryon (or quark) number conservation. If we neglect the weak interaction, then each
lepton and quark flavor is separately conserved.

The proper framework to describe heavy particles at low momentum are non-relativistic
EFTs. Examples of systems that can be studied with such techniques are atoms, mesons with
heavy (i.e., bottom or charm) quarks, and protons interacting with slow pions, etc.

phogen ® - mesou B - meton,

A heavy B-meson has similarities to a hydrogen atom, but an important difference is
that the light degrees of freedom inside the B-meson are still highly relativistic and strongly
interacting. Nevertheless some properties of hydrogen carry over: the energy of the B-meson
is to good accuracy independent of the b-quark spin. Also, the energy spectrum of B-mesons
is independent of the heavy-quark mass to good approximation:

Yamr sy,

(3 T (@) memanen

<

=1
OO

Heavy quark effective theory (HQET) will allow us to derive such relations in the limit
mg — oo and to systematically analyze the —L_ corrections. For systems such as hydrogen
mQ
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5. Non-relativistic effective theories

or a B, meson also lighter fermions (e~ or ¢ respectively) can be treated non-relativistically.
The EFT for this case is non-relativistic QED/QCD (NRQED/NRQCD). HQET and NRQCD
have the same Lagrangian but different power counting.

5.1. Heavy-quark effective theory

Interactions of the heavy quark () with the light constituents of a heavy-to-light meson will

change its momentum by amounts of order Agcp ~ 1 GeV, but its velocity is barely changed
A H

5@5 = % < 1. To analyze such systems, we introduce a reference vector v, v? = 1, in the

direction of the heavy quark and split

pé = mqgut + ¥, (5.1)

so that the residual momentum r* is O(Aqcp). A popular choice for v* is the meson velocity

L
vt = %. The EFT then corresponds to an expansion in the residual momentum r# over the
heavy quark mass mg.

On the level of the quark field the decomposition of the momentum is achieved by splitting

off the large phase e~¥™@v"® from the field:

Pq(x) = e hy(x) + Hy(x)}, (5.2)

where
ho(@) = €MQVEP, 10 (), p=222 (5.3)
1-7 (5.4)

H,(z) = ™QY* P_tpg(x), P =

The projection operators Py and P_ split the field into the large (“upper”) components h,(z)
and the small (“lower”) components H,(z). They obey

pho(z) = ho(z),  PHu(2) = —Hy(2). (5.5)

Let us insert this decomposition into the Dirac Lagrangian:

Lo = (i) — mq)iq (5.6)
= hyilphy + Hy(il) — 2mq)Hy, + Hyilphy + hyilp H,,

which further simplifies to
Lo = hyiv - Dhy, + Hy(—iv - D — 2mq)Hy, + Hyilp | by + hyil) | H,, (5.8)

when expressed in terms of the component Di = D* —v - Dv¥ perpendicular to v*. Here we
used that

hoYHhy = ﬁvw’%hv = —hy Y hy + 207 hyhy = VP hyhy, (5.9)
HA"H, = —v"H,H,, (5.10)
Hyph, = hyyH, = 0. (5.11)
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5.2. Connection to quantum mechanics

The EOM for H, is
(—iv- D —2mg)Hy, +ilp by, = 0, (5.12)

which can be formally inverted as

1 [ - -D\"
H, (-“’ >upLhU. (5.13)

- 2mg o 2mg

This shows that H, is suppressed with respect to h, by a factor Q%Q and can be integrated
out. Since the action is quadratic in the fields, this step can even be done exactly. At the
classical level, the result is obtained by inserting the solution of the EOM for H, back into

Lg. At leading order one obtains

) 1 1
Lo = hyiv - Dhy + —— hyild i) | +o(—2). (5.14)
2mg ——— meg

power corrections

The power corrections can be further rewritten as

. . . . 1 v 1 v
ipyilp, = ZDiZDVL(?{W“,V F+ 5[7“77 )
=Dy iDy (g — ic"™)
= (iD,)? + §[Dj,D,}]aM

s

(iD1)? + 5 "G,

where we used the analog of Eq. (4.3) for the QCD field strength tensor.! The resulting
Lagrangian

= 1 - . _
Lg = hyiv - Dhy, + %hv(le)zhv + 4%@hva,wG“”hv (5.19)
simplifies further when going to the rest frame v* = (1,0)

gs

hyo - Behy, (5.20)
mQ

_ 1 -
Lg = hyiDihy + ——h,D?h,, —
2mg 2
where B, is the chromomagnetic field and the notation has been changed to two-component
spinors. The first term is independent of the quark spin (“heavy-quark spin symmetry”) and

the quark mass (“heavy-quark flavor symmetry”). The second term breaks heavy-quark flavor
symmetry but maintains the spin symmetry, while the third term violates both.

5.2. Connection to quantum mechanics

Let us go into the rest frame of the heavy quark v* = (1,0). The projection operator is then

P = %(11 t0) = (1 O) , (5.21)

!The corrections from le vs. D, are symmetric in pu <> v and thus vanish upon contraction with o*”.
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5. Non-relativistic effective theories

i.e., Py projects out the upper two components of the Dirac field. When considering QED
instead of QCD,
Vg — Ve, iD,, — 10, — eAy,

the magnetic operator becomes

g Y i i (8 A — A 99
4mehva who 8mehv (0'c? —ala") (0;A; — 0jAi) hy (5.22)
2igiikgh 20;A;
e - e -
= G w0 (V5 Ay = 5o - Bh, (5.23)

The effective Lagrangian for a slow electron (described by a field X) is therefore

. 2
c-xinx-x"Plx . ¢ 5, Bx (5.24)
2mee 2me

The EOM associated with this Lagrangian is the Schrodinger equation for an e~ interacting
with a photon field. The free propagator associated with £

1

Np=—F7— (5.25)
TOE-E e
has only a single pole, in contrast to a relativistic propagator:
1 1 1 1
S 5 . — o5 —— - (5.26)
pP—m?+ie 2w |p'—w+ic pP+w—ic
particle antiparticle
1 1
=——>+..., (5.27)
2mp — B e
where w = m + % +...,p" =m+ E. This has important consequences: since the theory no
longer contains anti-particles, closed fermion loops vanish:
— k
1 1
p o /ddk =0, (5.28)
(E+k0) — %—l—iek‘o— X otic
p+k

because we can choose the k¥ integration contour without encountering a pole (since Im £° < 0
for all poles). Therefore all fermion loops vanish in HQET. The effect of virtual anti-particles
can be absorbed into the Wilson coefficients of the operators in L.g, €.g.,
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5.3. Non-relativistic QED and QCD

is represented by the Fuler—Heisenberg terms in Leg-.

Despite this observation, our theory is not simply quantum mechanics, since the electro-
magnetic field is a fully relativistic quantum field. To obtain QM, we need to treat also the
electromagnetic field as a classical one. Let us therefore assume that A" = ¢(0,x) is a fixed
classical potential (e.g., the Coulomb field of a proton).

Now the field operator fulfills

A~ A 2 A
The solutions of the time-independent Schrodinger equation

2
(—V . e¢<x>) ou(2) = Engpn(a) (5.30)

2m

form a complete set of functions, which can be used to expand
X(t,x) =Y e Piloi(x). (5.31)
i

The operator a; annihilates the state with associated wave function ¢;(z). Now the system is
indeed quantum mechanical: the one-particle states are |i) = a} |0) and they have associated
wave functions

(0] X (t,x) |i) = e Pl(x) (5.32)

that fulfill the Schrodinger equation.
To summarize

1. The EFT for a non-relativistic particle has a Lagrangian that has the Schrodinger
equation as EOM.

2. There are no anti-particles in the EFT, their effect can be absorbed into the Wilson
coefficients, since they are highly virtual.

3. Treating the photon as a classical background field we recover quantum mechanics.

5.3. Non-relativistic QED and QCD

Let us finally consider the effective theory relevant for the description of bound states of
two heavy particles, e.g., positronium (e*e™), muonium (u*p~), bottomonium (bb), and
charmonium (éc). The effective theories are called NRQED and NRQCD, respectively, and
are closely related to HQET, except for the fact that we now deal with both a particle,
described by a two-component spinor i, and an anti-particle, which we denote by x. The
effective Lagrangian has the form

Lar = Ly + Ly + Linixed + Elight- (5.33)

Lmixed contains operators involving both x and 1 fields. Ly;gy; is the QCD Lagrangian for the
light quarks plus higher-dimensional operators. The Lagrangians for the 1 field is nothing
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5. Non-relativistic effective theories

but the HQET Lagrangian evaluated for v# = (1,0), since it is natural to work in the rest
frame of the bound state. Therefore,

, D? 1 C C!
Ly :wT(th+ )¢+ DY+ Zlyte . By + 2yt (D-E-E- D)y
2m¢ 8m¢ 2m¢, 8m¢
C:
+ I3 (iD x E—E x iD) - o), (5.34)
8my,
where ¢ is the gauge coupling, g = gs or ¢ = —e. Moreover, we have included 1 /mQQ— and

1/ m%—suppressed terms because the power counting is different than in HQET. Next, £, is
obtained as the charge conjugate of Ly,

Ly= £w|¢—>X,A“—>—A”’ (5.35)
and the lowest-dimensional operators in Lixeq are four-quark operators, e.g.,
Cy Cs
Lmixea = 30T Xy + —SvToomx xoaoy. (5-36)

The first operator arises when high-energy contributions to the scattering of x and v are
integrated out, e.g., y

X Pl x'x
The second operator arises in annihilation diagrams such as

RARED T4

X

These diagrams only exist if x is the anti-particle of ¥. They have an imaginary part,
which describes the decay ¥x — v (or gg), and accordingly Cj is imaginary. The effective
H is not Hermitian and the theory is not unitary! However, there is a good physical reason
for this violation of unitarity: bound states, such as ete™, decay over time. The imaginary
part of H encodes the decay rate. The probability for finding the e~ in eTe™ is not 1 for all
times, because it will annihilate sooner or later.

This is the first complication compared to HQET. The second one is that the static La-
grangian

L =yliow (5.37)

cannot serve as a starting point in non-relativistic theories. There are formal arguments to

show this, but the simple physical reason is that the eTe™ in the bound state are not static.
2
They are close to their mass shell E = 2~ + ... and we thus should count D; ~ Q%j ~ Y :

as of the same order. Instead of powers of 1/mg, we should count powers of v = |v|. A third
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5.3. Non-relativistic QED and QCD

complication is that the multiple photon/gluon exchanges between 1 and x are unsuppressed.
More precisely, the exchange of Coulomb gluons needs to be taken into account to all orders.
In Coulomb gauge V - A = 0, the gauge Lagrangian reads

1 1 . 1 ..
=G Gy = 5G"Goy — 1 GV Gy

[(81140)2 -+ (80A1)2 — (BZA])Z + “non-Abelian” terms] . (538)

1
T2
The field Ag has no time derivatives and is thus not propagating. Since the action is quadratic,
one can integrate out A°. Its effect is then described by a potential, which is just the Fourier
transform of its propagator

A3k

) 1 2
—v) =2 ike(x—y) - _ __ 95
Vix—y)=g; / 3¢ 2= Ik g (5.39)

The leading-order effective Lagrangian for a non-relativistic particle-antiparticle pair is then

, V2 a a
txn= [t [0+ 5 v [ @ [Pt v - )
(5.40)
Accounting for V (x) to all orders amounts to solving the Schrédinger equation. The remaining

terms are treated as perturbations. Unfortunately, we thus found that the problem involves
three different scales

‘ m (hard) ‘ mu (soft) ‘ mv? (ultrasoft)
ete” value | 0.5 MeV | 3.7keV | 25 eV

where we have used that for positronium V ~ «. These three scales make it difficult to
organize the computations. In particular, in dimensional regularization the non-relativistic
integrals receive contributions from the hard region, since the scale mg appears in the inte-
grand. Initially people used to perform the computations with a hard cutoff, which avoids
this problem but makes computations extremely cumbersome. Using the threshold expan-
sion [51], which is also called the “strategy of regions,” it became possible to eliminate the
unwanted hard corrections in dimensional regularization and to separate the soft and ultrasoft
corrections. An EFT approach that implements this separation on the level of the Lagrangian
is “velocity NRQCD” or “vNRQCD,” first proposed in Ref. [52]. An earlier solution called
“potential NRQCD” (“pNRQCD”) [53] amounts to integrating out the soft scale mv and to
constructing an effective theory containing only ultrasoft degrees of freedom:

Lqcp (e >m) hard + soft + ultrasoft
1
LNRQCD (m > pu > mv) soft + ultrasoft
1
Lonrgep  (mv > p> muv?) ultrasoft

The fields in pNRQCD are not quarks and anti-quarks, but color-singlet and color-octet
QQ-pairs:

r.o,r
S=5(r) ~ XT(—§)¢(§
where S is the singlet and O the octet pair, which interact through potentials V(r) and

ultrasoft gluons.

), 0%~ xt%, (5.41)
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A. Loop integrals in dimensional regularization

In this appendix we derive the standard formula

o i(—1) MNa+d)r(f-—a-4¢
t0:0,8) = [ e = (r(d;) < e s

2

and show that all one-loop integrals can be brought into this form.

As a first step, we consider I(«, 3, A) for parameters « + d/2 > 0 (IR convergence) and
B—a—d/2 > 0 (UV convergence), by performing a Wick rotation to Euclidean space k* = ik:%,
k = kg. Dropping the Euclidean label in the following, this gives

, 'k (k%) i(—1)0tBQ, [ kd-1+20
_ s 1\at+B . R
I(a, B,A) =i(-1) / Crd(R2+A¥B ~  (2n)d /0 EWNE

- i(—l)a+ﬁQd o B2 oo pa—l+d/2

B WA /0 dl‘mj (A.2)

where we used polar coordinates in d dimensions with area 24 of the unit sphere und changed
the integration to z = k?/A. The remaining integral can be brought into standard form by
the transformation y = /(1 + z), with dz = dy/(1 — y)?,

i(=1)PQ, L _ Ca—d/o—
7 A) — I B+d/2/ du 0+ d/2=1(1 _ o\ B—a—dj2-1
(o, B,A) 320" vy (1-y9)
. o d _a—4d
_ Z(*l) +ﬁQdAaﬁ+d/2F<a + 2>F(6 @ 2) (A.3)
2(2m)¢ ING)) ’
where in the last step we applied the general relation for the Beta function
' ['(a)I'(b)
B(a,b) = dyy®t(1 —y)bt = =~ A4
@b) = [yt - = (A4)

The final result (A.1) then follows with Qg = 27%2/I'(d/2), which can be derived from
Gaussian integrals in d dimensions

d
/aldzzce_x2 = [/da:e_mQ] = /2

_ > d—1 —12_% > d/2—1 —y_& @
—Qd/o dex® e ™ = 2/0 dyy eV = 2F(2>. (A.5)

The derivation only applies for integer values of d, with the general result defined by

27rd/2

Qd:F@.
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Similarly, our derivation of (A.1) only applies as long as the integral is IR and UV convergent.
However, the right-hand side is an analytic function of d, «, and /3 except for poles for a+d/2
and f—a—d/2 at 0,—1,—2,.... The integral is then defined by the analytic continuation in
these variables. To evaluate the limit of d = 4 — 2¢ — 4, one often needs the expansion

(=D"

n!

I'(—n+e¢) = (%*’YE+1+"'+%>+O(€), (A.7)

where yg = 0.5772. .. is the Euler—-Mascheroni constant.

To demonstrate that all one-loop diagrams indeed take the form (A.1) one uses Feynman
parameterizations to combine multiple propagators into a single one, in the simplest case
using

1 ! 1
AB /0 AT (= 2)BP (A.8)

A non-trivial example including Lorentz indices is given by
g _ / dk kHEY B / d’k /1 dx kHEY
) emd (k2 +ie)((k—p)2+ie) ) (2m)d Jo T [k2—2zp -k + xp? + i€)?

'k [ e
:/ (27T)d/0 Pk ap t ol — D) i (A.9)

Shifting k — k + ap, we can identify A = —2(1 — 2)p? — e and find
o / 4k /1 KPR P+ a(p R+ k)
(k* — A)?

ddk g k2+x pHlpY
/diL’/ AR (A.10)

where we used that the linear terms in £ vanish upon integration. For the quadratic terms
we used Lorentz invariance, i.e.,

d dp.
/(;i ’; ErEY f(K?) = ”/(;’;df(ﬁ). (A.11)

Upon contraction with g"” this gives
dek dk -
[ s = a [ o) (A12)

and thus f(k?) = f(k?)k?/d in the integral. In the form (A.10) the master formula (A.1)
applies.
For more complicated integrals the generalized Feynman parameterization reads

n m;—1

m 1 1 "o
ATlij-..Anmn = F(ml)r-(--)r(mn)/o dxl.../o da:né(l—in)M, (A.13)

=1 i=1

where m = )" ; m;. To derive this relation, we proceed by induction in n. The case n = 2
follows by taking derivatives of

1
AB /dx/ dyo(l — oz — )( A+ D) (A.14)
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with respect to A and B, which gives

1 m1 + m2 gm—lyme—1
= d dyé(1 . Al
Ami gma / * / Y ~YGAT yBy (A.15)

In the induction step, we assume (A.13) for n — 1, and then use (A.15) to combine A, with
the rest:

1 L'(m) ' ' -1, m—mp—1
= d dyo(l —az —y)z™ y™m
ATAT AT e ) vt ==y

L'(m —my,)T'(my,)

L(m —mn) ' ! 5<1 -y xz) |
X F(ml)n.l. .Fr(nmnil) /0 dzxy - - ./0 dzrp—1 [xAn N y(Z?:_ll xﬁh)]m

. F(m) ! m—mp—1 ! X1 ' T —Yy—x
= T fy W77 e ] ey

5(1 . nzl a:) [T, = . (A.16)
i1 |:an77, + y(Z?;f sz'L)} "

The induction step follows by rescaling z; — x;/y for i = 1,...,n — 1 and the remaining
integral
1 1 n—1 n—1
/ dyy '6(1 —y — xp) ( fz:rz) / dyy~ 1(5(1—y—xn)y(5<y sz>
0 Yy =1 0 =1
n
- 5(1 . Zx) (A.17)
i=1

The upper integration boundaries are not affected and can be set to oo in intermediate steps
to simplify the argument.
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B. Feynman rules for derivative couplings

Feynman rules are usually formulated in momentum space. For theories involving derivative

couplings they are obtained after Fourier transforming the action to momentum space, just

as for the standard case without derivatives. In Fourier space, a derivative 0, acting on an

incoming particle with momentum p gives —ip,, and the opposite sign for an outgoing particle.

To derive the Feynman rules, it is simplest to consider all momenta to be incoming. Moreover,

to facilitate calculations it is useful to symmetrize the Feynman rules in the external legs.
Let us consider as an example the interaction term

6L = 536°(€)06*(x) (B.1)

and transform it to momentum space according to

~ d . ~
oa) = [ o) = [ Gsge o) (B.2)

where k is an incoming momentum. In Fourier space the interaction becomes

[ oe /k /k /k /k [t G o030 [ (ka + )] ) )it

- _j'/k /k /k . G (k1) p(k2) (ks + ka)?p(k3)p (k) (2) 16 (ky + K + ks + ka)
(B.3)

where the d-function arose from the integration over x. The disadvantage of this form is
that two of the fields are singled out, so that in the application one would need to remember
on which fields the derivatives act. It is much easier to symmetrize the Feynman rule using
momentum conservation, i.e.,

/ dror= -2 /k 1 /k 2 /k | BB 02) (k) 2m) D (ks + b s+ )

xS [(bn o+ B2)? + (b B + (b + R, (B.4)

which is now completely symmetric in the three distinct momentum pairs. The associated
Feynman rule is

:_%Km+bﬁ+@ﬁ¢@%wh+mﬂ. (B.5)

The 4! is canceled by the combinatorial factor from all possible Wick contractions, just as for
¢* theory.
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B. Feynman rules for derivative couplings

Let us consider the contribution of this interaction term to the four-point function, i.e., the
scattering process

¢(p1)9(p2) — &(p3)d(pa), (B.6)
with p1 2 incoming and p3 4 outgoing. Accordingly, the amplitude becomes
M= —% [(p1+p2)® + (p1 —p3)° + (p1 — pa)*] = —% [T +p3 + 3 + i), (B.7)

which on the mass shell, p? = m?, reduces to M = —4gm?/3.
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C. CCWZ construction of phenomenological
Lagrangians

The construction of effective Lagrangians becomes more complicated if the symmetries of the
full theory are not fully realized by the ground state, i.e., if a symmetry becomes spontaneously
broken. In this case, a method to construct the effective Lagrangian was developed by Callan,
Coleman, Wess, and Zumino (CCWZ) in Refs. [42,43]. Here, we follow the presentation from
Ref. [54].

Suppose, the full theory is invariant under the group G, while the ground state is only
invariant under the subgroup H of G, giving rise to n = ng — nyg Goldstone bosons, where
ng and ny denote the number of generators. The Goldstone bosons are described by fields
¢, collected in a vector ® = (¢1,...,¢y). This defines a vector space

My ={®: M* - R"|¢; : M* — R}, (C.1)

with M* Minkowski space. The main point in the CCWZ construction amounts to establishing
a connection between the so-called quotient G/H and the Goldstone-boson fields, in such a
way that the effective Lagrangian can then be parameterized by resorting to a set of variables
parameterizing the elements of G/H. The application described in a main text concerns low-
energy QCD with G = SU(3)r, x SU(3)r and H = SU(3)y (“Chiral perturbation theory”),
another generalized realizations of the Higgs sector with G = SU(2)r, x U(1l)y and H =
U(1)gm (“Higgs effective field theory”).

The aim is to find a mapping ¢(g, ®) from G x M; — M; with the following properties

ole,®) =P V& e M, eidentityof G,
¢(glu¢(g2>¢)) = (;5(91927 (p) vglaQQ S Gu P S Ml' (02)

Such a mapping is called an operation of G on My, and the second condition the group-
homomorphism property. Note that we do not require this mapping to be linear, i.e., in
general ¢(g, \®) # Ap(g, @), so the result will not define a representation.

Let us first consider ® = 0, for which all fields are mapped onto the origin in R, which,
in a theory with Goldstone boson only, can be interpreted as the ground-state configuration.
Since the ground state is invariant under H, we require that ¢(h,0) = 0 for h € H. Next, we
turn to the quotient G/H, which is defined as the set of all left cosets {gH|g € G}. Here, the
set gH = {gh|h € H} defines the left coset of g € GG, and the quotient is the set of all such
cosets. An important property of this construction is that cosets either completely overlap or
are completely disjoint.

Before proceeding, let us illustrate these properties using the symmetry group C4 of a
square with directed sides:
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C. CCWZ construction of phenomenological Lagrangians

<

>

This group consists of four elements Cy = {e,a,a?,a®}, where a can be interpreted as a
rotation by 7/2. The nontrivial subgroup is H = {e, a?}, with left cosets

eH = {e,a*} = a®H, aH = {a,a®} = a®H. (C.3)

The quotient G/H therefore consists of the two elements {e,a?} and {a,a®}. Since the
elements of G/H are completely disjoint, any element of a given coset uniquely represents the
coset in which it appears. It is this property that is exploited in the CCWZ construction, to
which we now return.

For g € G and h € H we have

qS(gh, 0) = ¢(Q, ¢(h70)) = QZ)(Q,O), (04)

i.e., the action on ® = 0 is identical among a given coset gH, which can be interpreted in such
a way that the origin is mapped onto the same vector in R™. Second, the mapping is injective
with respect to the elements of G/H (no two elements are mapped onto the same @), which
can be seen as follows: consider g,¢' € G with ¢’ ¢ gH and let us assume ¢(g,0) = ¢(¢’,0).
Then

0=0(e,0) =g '9,0) = (g7, 0(g,0)) = p(g~ ", 8(¢',0)) = d(g~ "¢, 0), (C.5)

which implies g~'¢g/ € H, i.e., ¢ € gH, in contradiction to the assumption, so that ¢(g,0) =
#(g’,0) must be false. From this one concludes that there exists an isomorphic mapping
between G/H and the Goldstone-boson fields. To account for the fact that they also depend
on x € M* (and are not just constant vectors in R™ as assumed so far), the cosets gH are
also allowed to depend on x.

For the construction of the effective Lagrangian we need the transformation behavior of
the Goldstone-boson fields under g € GG, which we can now study based on the isomorphism
just established. To each ® corresponds a coset gH with some g. Let f = gh € gH denote a
representative of this coset, i.e.,

Now,

so, in order to obtain the transformed ®’ from a given ® we simply need to multiply the
left coset gH representing ® by ¢ in order to obtain the new left coset representing ®’. This
procedure then determines the transformation behavior of the Goldstone bosons, leaving the
task of finding a convenient parameterization of G/H.
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