
May 28, 2021

Effective Field Theory

Thomas Becher and Martin Hoferichter

Institute for Theoretical Physics
University of Bern

Sidlerstrasse 5, 3012 Bern, Switzerland

Abstract

This lecture provides an introduction to the framework of low-energy effective field theories.
After developing the basic concepts, the method is used to analyze electromagnetic, weak, and
strong interactions at low energies. The course is intended for master or graduate students
who have taken a first course in quantum field theory.
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1. Introduction

Effective field theory was first developed in the context of the strong interactions [1–3], but
has since become an important tool in all of particle and nuclear physics (and beyond). It
is based on ideas related to the Wilsonian renormalization group [4], which describes the
evolution of operators as a function of the renormalization scale. In the first two chapters
we will review its basics and introduce the concepts and techniques of effective field theory
using the example of scalar fields. The later chapters then address applications, mainly to
the low-energy properties of the Standard Model.

These notes were compiled for the course “Effective Field Theory” by Thomas Becher
delivered at the University of Bern in 2010 and 2015, and set in LATEXby Jonas Haldemann.
The present version has been revised and corrected by Martin Hoferichter for a course in 2021.
The material covered is largely based on Refs. [5–8], to which we also refer for further reading.
Of course, we take full responsibility for all typos and mistakes introduced or overlooked by
us.

3



2. The Wilsonian effective action

Consider a field theory with characteristic large energy scale M , and suppose we are only
interested in physics at low energies E � M . This is the physical situation effective field
theories are designed to analyze. The full theory is defined in terms of a path integral.
Everything we wish to know can be obtained from calculating the expectation values

〈0|T {φ(x1) . . . φ(xn)} |0〉 =
1

Z

∫
Dφ eiS(φ)φ(x1) . . . φ(xn), (2.1)

where the integration measure is∫
Dφ =

∏
xµ

∫
dφ(x) or

∫
Dφ =

∏
pµ

∫
dφ̃(p), (2.2)

and

Z =

∫
DφeiS(φ). (2.3)

To obtain the low-energy effective action, we split the field

φ = φL + φH ,

∫
Dφ =

∫
DφL

∫
DφH , (2.4)

where φH contains all Fourier modes with ω ≥ Λ and φL the low-energy modes ω < Λ. Since
we are only interested in low-energy physics, we only need to consider correlation functions

〈0|T {φL(x1) . . . φL(xn)} |0〉 =
1

Z

∫
DφL

∫
DφH eiS(φL+φH)︸ ︷︷ ︸

eiSΛ(φL)

φL(x1) . . . φL(xn) (2.5)

=
1

Z

∫
dφL e

iSΛ(φL)φL(x1) . . . φL(xn). (2.6)

SΛ(φL) is called the “Wilsonian effective action” and we have chosen Λ ≤M to integrate out
the physics associated with M . SΛ(φL) is non-local on scales ∆xµ & 1

Λ (i.e., the Lagrangian
is not just a polynomial of the fields or their derivatives evaluated at a single point in space-
time), because high-energy fluctuations have been integrated out. As a final step one expands
the non-local action as a series of local operators. This expansion is possible because E � Λ.
The result has the form

SΛ(φL) =

∫
ddxLeff

Λ (x), (2.7)

Leff
Λ (x) =

∑
i

giOi(x), (2.8)

where the object Leff
Λ is called the effective Lagrangian. It is an infinite sum over local

operators Oi allowed by symmetries. The coefficients gi are referred to as Wilson coefficients.
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To make this a little more concrete, assume that we integrated out a heavy particle with mass
M . The full theory might contain diagrams such as

P

p2

p1

∼ 1

P 2 −M2
, (2.9)

where the two incoming lines represent the light field φL and the double line the heavy field
φH . Since p1, p2 �M , we can expand

1

p2 −M2
= − 1

M2
− p2

M4
+ · · · → − 1

M2
δ(4)(x) +

�
M4

δ(4)(x), (2.10)

so Leff
Λ will contain terms such as φ4

L(x) and ∂µφL(x)∂µφL(x)φ2
L(x) etc. In general it will be

very hard to calculate the coefficients gi and since we ended up with infinitely many terms in
Leff

Λ it is, a priori, unclear how the construction is useful.
The required ordering principle is provided by dimensional analysis. With ~ = c = 1

[m] = [E] = [x−1] = [t−1] all quantities measured in the same units. Assuming that [gi] = −γi
is the mass dimension of gi, it follows that

gi = CiM
−γi , (2.11)

with a dimensionless coefficient Ci. Since the coefficients arose when integrating out the
physics associated with M , it is natural to assume that Ci = O(1). Very large, e.g., Ci ∼ 106,
or very small coefficients, e.g., Ci ∼ 10−6, would call for some explanation in terms of degrees
of freedom not considered. At low energy, the contribution of Oi to a dimensionless observable
scales as (

E

M

)γi
=


O(1) γi = 0

� 1 γi < 0

� 1 γi > 0

, (2.12)

and therefore only operators with γi ≤ 0 are important at low energy.
To derive the mass dimension δi of a given operator, we need to know the mass dimension

of the fields. Assuming that the theory is weakly coupled, the scaling dimension is determined
by the free action

S0 =

∫
ddx

(
1

2
(∂µφ)2 − m2

2
φ2

)
(2.13)

with [x] = −1, [∂µ] = +1 ∼ E, and using that the action is dimensionless, we find

[φ] =
d

2
− 1, i.e. φ ∼ E

d
2
−1. (2.14)

For an operator with mass dimension δi, we have γi = δi − d, e.g.

δi γi scaling of gi
∂µφ∂

µφ d 0 1
φ2 d− 2 −2 M2

φ4 2d− 4 d− 4 M4−d

(∂µφ)2φ2 2d− 2 d− 2 M2−d

φ6 3d− 6 2d− 6 M6−2d
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2. The Wilsonian effective action

For an operator with n scalar fields and m derivatives we have

δi = n

(
d

2
− 1

)
+m, γi = (n− 2)

(
d

2
− 1

)
+m− 2, (2.15)

so only very few operators have γi ≤ 0 (unless d ≤ 2). The following terminology is commonly
used:

Dimension Importance for E → 0 Terminology for operator

δi < d γi < 0 grows relevant (super-renormalizable)

δi = d γi = 0 constant marginal (renormalizable)

δi > d γi > 0 declines irrelevant (non-renormalizable)

This terminology is not optimal. For example, it is interesting to search for the effects
mediated by irrelevant operators, since they provide information on the physics at very high
energies.

Moreover, our discussion makes it clear that renormalizability is sometimes overrated: usu-
ally one avoids irrelevant operators because they render a theory nonrenormalizable. However,
once we admit that a theory is not valid up to infinitely large energies, then it is clear that
it will contain also irrelevant operators. This is not a problem, because their contributions
are suppressed by some large scale M , at which new physics enters. Renormalizable La-
grangians are so successful in describing our low-energy measurements because the relevant
and marginal operators are the most important ones at low energies.

2.1. Examples of irrelevant operators

Before we proceed further with the renormalization group, we give some examples of irrelevant
operators

• The gauge symmetries of the Standard Model allow us to write down a dimension-5
term g O = g νTHHν with g ∼ 1

Λ (ν and H are neutrino and Higgs fields, respectively).
After electroweak symmetry breaking this yields a Majorana mass term for the neutrino,

with mν ∼ 〈H〉2
Λ (where 〈H〉 ∼ 174 GeV is the vacuum expectation value of the Higgs

field). The fact that Λ ∼ 1014 GeV can be interpreted as evidence for physics beyond
the Standard Model at these scales.

• The weak interaction is so weak at low energies because it is mediated by irrelevant
operators such as O = ūγµ(1 − γ5)d l̄γµ(1 − γ5)ν. The fermion field scales as ψ ∼ E

3
2 ,

so δ = 6, γ = 2. The coefficient of the operator must be proportional to 1
M2 . Here, the

mass M = MW , is the mass of the W -boson. From the form of the interaction, Oskar
Klein predicted the existence of massive particles with MW ≥ 60 GeV already in 1938.

While irrelevant operators are perfectly natural, super-renormalizable/relevant operators are
problematic. Consider for example the φ2 operator in φ4 theory. In d = 4, we have δi = 2,
γi = −2, and so we expect that m2 ∼ Λ2. Integrating out the quantum fluctuations at large
scales generates a large mass for scalar particles. But this is a contradiction: if m2 ∼ Λ2 we
should have integrated out the corresponding field φ. Note that also ψ̄ψ ∼ E3 is relevant.
This reasoning leads one to conclude that only theories whose mass terms are forbidden by
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2.2. Renormalization Group

symmetries are natural. Looking at the Standard Model as an effective theory, this condition
is almost fulfilled:

• gauge bosons do not have mass terms because they are forbidden by gauge symmetry,
i.e.

m2(Aµ)2 → m2e2iα(Aµ)2 (2.16)

is not invariant,

• fermion fields do not have mass terms because left- and right-handed fields

ψL =
1

2
(1− γ5)ψ, (2.17)

ψR =
1

2
(1 + γ5)ψ, (2.18)

have different gauge charges: ψR is neutral under SU(2)L, ψL is not, so that a mass
term mψ̄ψ = m(ψ̄RψL + ψ̄LψR) would violate gauge invariance.

Note that the absence of a mass term in LSM does not imply that the fermions and gauge
bosons are massless. They receive their mass by interacting with the Higgs condensate
ψ̄LHψR → ψ̄L 〈H〉ψR, where 〈H〉 is the vacuum expectation value. The only mass term
in the Standard Model is the mass term of the Higgs field µ2H†H. There are several ways
out of this dilemma, but all of them involve physics beyond the Standard Model around the
scale of the Higgs mass:

• Supersymmetry relates fermions and bosons. It can be used to protect scalar masses.
Constructing the theory in such a way that fermion masses are forbidden implies that
scalar masses are forbidden as well.

• In technicolor models, the Higgs boson is a bound state of a fermion–antifermion pair,
similar to mesons in QCD.

• In little Higgs models, the Higgs boson is a pseudo Goldstone boson of a spontaneously
broken global symmetry.

Alternatively, the smallness of MH could just be due to some accidental cancellation. To
make this more plausible, people often invoke the anthropic principle: “if the Universe (in
our example MH) were much different, we would not be here.” There is no concrete evidence
for any of these explanations, and we will not revisit this more philosophical discussion in the
following.

2.2. Renormalization Group

So far, we have considered a situation where we integrated out physics above some charac-
teristic scale M . It is also interesting to look at what happens if we only integrate out a
small slice Λ > ω > Λ− δΛ in which the particle content remains unchanged. In this case the
form of the action is unchanged, only the coefficients gi change. Repeating the procedure,
one obtains the couplings as a function of the cutoff

{gi(Λ)} → {gi(Λ− δΛ)} → {gi(Λ− 2δΛ)} → . . . (2.19)
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2. The Wilsonian effective action

The evolution equations

Λ
dgi
dΛ

= f({gi}) (2.20)

are called renormalization group (RG) equations (the transformation of the theory from one
scale to another can be formally interpreted as a group transformation in the mathematical
sense). Let us derive this RG evolution for the trivial but instructive case of a quadratic
action. The general form is

L =
1

2
φ(x)[−m2 − 1×�+ c�2 + . . . ]φ(x). (2.21)

After Fourier transform

φ(x) =

∫
k
e−ikxφ̃(k) =

∫
ddk

(2π)d
e−ikxφ̃(k), (2.22)

the action becomes

S =
1

2

∫
ddx

∫
p

∫
k
φ̃(p)[−m2 + k2 + ck4 + . . . ]φ̃(k)e−i(p+k)x (2.23)

=
1

2

∫
k
φ̃(−k)[−m2 + k2 + ck4 + . . . ]φ̃(k). (2.24)

We further assume that our theory is defined with a UV cutoff Λ:∫
k
→
∫ Λ

k
=

∫ Λ

−Λ

dk0

2π

∫ Λ

−Λ

dk1

2π
· · ·
∫ Λ

−Λ

dkd−1

2π
. (2.25)

Let us now split φ = φL + φH according to

φ̃(k) = φ̃L(k) + φ̃H(k) (2.26)

=

{
φ̃L(k) |kµ| < bΛ, ∀µ
φ̃H(k) |kµ| > bΛ, for some µ

(2.27)

The field φL describes functions below Λ′ = bΛ, with a free parameter b ∈ [0, 1]. Our action
splits accordingly into

S = SL + SH =
1

2

∫ bΛ

k
φ̃L(−k)[. . . ]φ̃L(k) +

1

2

∫ Λ

k
φ̃H(−k)[. . . ]φ̃H(k). (2.28)

If we are only interested in low energy Green’s functions

〈0|T{φL(x1) . . . φL(xn)} |0〉 =
1

Z

∫
DφL

∫
DφH eiSHeiSLφL(x1) . . . φL(xn), (2.29)

then the effect of φH is absorbed by the normalization, so that

〈0|T{φL(x1) . . . φL(xn)} |0〉 =
1

ZL

∫
DφL eiSLφL(x1) . . . φL(xn). (2.30)

To compare SL with S, let us now rescale

k′ =
k

b
, x′ = xb. (2.31)
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2.2. Renormalization Group

In terms of the variable k′, the cutoff moves back to Λ. The action becomes

SL =
1

2

∫ Λ

k′
bdφ̃(−bk′)[−m2 + b2k′

2
+ b4ck′

4
+ . . . ]φ̃(bk′). (2.32)

Let us further rescale φ̃(bk′)→ φ̃′(k′)× b−
d+2

2 to have a canonically normalized kinetic term.
The resulting action

SL =
1

2

∫ Λ

k′
φ̃′(−k′)[−m

2

b2
+ k′

2
+ b2ck′

4
+ . . . ]φ̃′(k′) (2.33)

shows that we get the same theory, but with

m2 → m2

b2
(relevant), c→ b2c (irrelevant), (2.34)

so for b = 1
2 , for example, the mass becomes four times as large, while the coefficient of the

four-derivative term is four times smaller. If we iterate the transformation (making b smaller
and smaller), we get the renormalization group flow in the space of coupling constants:

m
2

C

?λ

Figure 2.1.: The point m = c = · · · = 0, the massless scalar field action, is a fixed point. This
is called the Gaussian fixed point.

When this analysis is extended to theories that include small couplings, the result is ba-
sically unchanged. The irrelevant operators remain irrelevant, and the relevant ones stay
relevant. However, it becomes very interesting to check what happens with marginal oper-
ators. The small perturbation induced by the coupling will make them marginally relevant,
or marginally irrelevant. For QCD, it turns out that the coupling slowly gets stronger as the
high-energy modes are integrated out. Starting with an essentially free theory defined with a
very high cutoff Λ, one ends up with a strongly coupled theory at low energy. This property
is called asymptotic freedom. As we will show now, the situation is opposite for φ4 theory.
Even if the theory has a large coupling in its Lagrangian, it looks more and more like a free
theory when the high-energy modes are integrated out.

We now turn to φ4 theory with a cutoff Λ

Z =

∫
Dφ exp

[
−
∫
ddx

(
1

2
(∂µφ)2 +

m2

2
φ2 +

λ

4!
φ4

)]
, (2.35)
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2. The Wilsonian effective action

where Dφ =
∏
|k|<Λ dφ̃(k). Moreover, we switched to Euclidean space1 to facilitate isolating a

given momentum region in the integral, i.e., tM = −itE , x2
M = −x2

E , in the above expression
xµ ≡ xµE , k ≡ kµE . Let us now again split

φ̃(k) = φ̃L(k) + φ̃H(k), (2.36)

φ̃H(k) = φ̃(k)Ξ(k), (2.37)

Ξ(k) = Θ(|k| < Λ)Θ(|k| > bΛ). (2.38)

The quadratic part of the action will again just turn into a sum of quadratic actions, but the
interaction now also includes crossed terms:

S(φL + φH) = S(φL) + S(φH) +

∫
d4xλ

[
φLφ

3
H

3!
+
φ2
Lφ

2
H

2!2!
+
φ3
LφH
3!

]
. (2.39)

Now we will derive the Feynman rules and then integrate over φH to lowest order in pertur-
bation theory. The propagators in the theory are

∆L = 〈0|T{φL(x)φL(0)} |0〉 =

∫ Λ d4k

(2π)4
eikx

1

k2 +m2
Θ(|k| < bΛ), (2.40)

∆H = 〈0|T{φH(x)φH(x)} |0〉 =

∫ Λ d4k

(2π)4
eikx

1

k2 +m2
Θ(|k| > bΛ), (2.41)

〈0|T{φH(x)φL(x)} |0〉 = 0, (2.42)

which we will denote as

∆L = (2.43)

∆H = (2.44)

The Feynman rules for the interactions are

= −λ = −λ

= −λ = −λ

At tree level, we have diagrams such as

=
λ2

(p1 + p2 + p3)2 +m2
Θ(|p1 + p2 + p3| > Λb), (2.45)

1In Minkowski space

SM =

∫
ddxM

[
1

2
(∂Mµ φ)2 − 1

2
m2φ2 − λ

4!
φ4

]
= i

∫
ddxE

[
1

2
(∂Eµ φ)2 +

1

2
m2φ2 +

λ

4!
φ4

]
= iSE
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2.2. Renormalization Group

which corresponds to a 1
(Λb)2 -suppressed φ6

L interaction after integrating out φH .

However, we are mainly interested in the behavior of the φ4 interaction. In this case, there
is no tree-level contribution, but one-loop diagrams of the form

(1)

+

(2)

+ (3) + (4) + permutations

(2) + (4) are diagrams in the low-energy theory, so we only need to evaluate (1) and (3). It
turns out that (3) only contributes to the mass term φ2

L, but not to the interaction. This
leaves diagram (1), for which we get

D1 =
λ2

2

∫
ddk

(2π)d
1

k2 +m2

1

(k + p1 + p2)2 +m2
Θ(|k| > Λb)Θ(|k| < Λ)

×Θ(|k + p1 + p2| > Λb)Θ(|k + p1 + p2| < Λ). (2.46)

Since m� Λb, pµi � Λb (the external momenta can be taken arbitrarily small), we can Taylor
expand on the level of the integrand. Higher orders in the expansion are suppressed by m

Λ ,
pµ

Λ and match onto irrelevant operators. This gives

D1 =
λ2

2

∫
ddk

(2π)d
1

(k2)2
Θ(|k| > Λb)Θ(|k| < Λ) + . . . (2.47)

=
λ2

2

Ωd

(2π)d

∫ Λ

bΛ
dk kd−5 (2.48)

=
λ2

2

Ωd

(2π)d
Λd−4 − (Λb)d−4

d− 4
, (2.49)

with Ωd = 2πd/2

Γ( d
2

)
and

lim
d→4

Λd−4 − (Λb)d−4

d− 4
= lim

d→4

1− bd−4

d− 4
= − log b. (2.50)

Further, for d = 4 we have Ω4 = 2π2 and thus

D1 =
λ2

16π2
log

1

b
. (2.51)

Accounting also for the crossed diagrams and yields the result

=
3λ2

16π2
log

1

b
+O(λ4). (2.52)
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2. The Wilsonian effective action

Figure 2.2.: The curved arrow denotes the Landau pole at −1 = 3
16π2λ(1) log 1

b .

In the low-energy theory, this contribution must arise from −
∫
d4xλ

′

4!φ
4
L, so we can identify

λ′ = λ− 3λ2

16π2
log

1

b
(2.53)

The coupling gets weaker when high-energy modes are integrated out! Let us imagine that
we integrate the high-energy physics little by little, so integrating

dλ = +
3λ2

16π2
d log b (2.54)

we find ∫ λ(b)

λ(1)

dλ

λ2
=
−1

λ(b)
+

1

λ(1)
=

3

16π2
log b, (2.55)

and thus

λ(b) =
λ(1)

1 + 3
16π2λ(1) log 1

b

. (2.56)

Our analysis was a bit simplistic, in that we only looked at one operator, φ4, and did
not include the effects of irrelevant operators. Also, our conclusion is only valid at small
coupling. Nevertheless, all available (perturbative and non-perturbative) evidence suggests
that the behavior persists at arbitrary values of λ. Since the coupling becomes small, one
needs to start out with a sufficiently strong coupling at large values of the cutoff

λ(1) =
λ(b)

1− 3
16π2λ(b) log 1

b

. (2.57)

Since λ(1) → ∞ for log 1
b = 16π2

3
1
λ(b) it appears that the cutoff cannot be arbitrarily large,

log 1
b = log Λ

E ≤
16π2

3
1
λ(b) .
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2.2. Renormalization Group

Since we did our analysis in perturbation theory, the extrapolation λ→∞ is obviously not
very meaningful. Theories that have the property that the cutoff cannot be chosen arbitrarily
large for non-vanishing λ are called trivial. All evidence strongly suggests that λφ4 is a trivial
theory.
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3. Continuum effective theory

The construction of the Wilsonian effective action is physically very intuitive, and leads to a
new perspective on renormalization. However, actually integrating out the physics above a
cutoff Λ is often as difficult as solving the theory. Instead of integrating out the high-energy
physics, it is much simpler to work without a hard cutoff and to treat the effective theory like
a standard continuum field theory. To get the effective theory, one follows a number of steps,
which we now discuss in turn:

1. Identify the low-energy degrees of freedom. This can be simple: e.g., if we consider a
theory with a very heavy particle and weak coupling, the low-energy degrees of freedom
are simply all light particles. In other cases it is not trivial: in QCD, the low-energy
degrees of freedom are pions, kaons, protons, neutrons, etc. and not the quarks and
gluons in the high-energy Lagrangian.

2. Construct the most general low-energy Leff consistent with the symmetries of the full
theory. Order the operators in Leff by their dimension.

3. Matching. To determine the coupling constants in Leff calculate a number of correlation
functions (or scattering amplitudes) in both the full and the effective theory. Expand
the full theory result around the low-energy limit and adjust the Wilson coefficients in
Leff in such a way that the full and EFT results agree.

4. RG improvement. The perturbative expansion of the Wilson coefficients can be im-
proved by using RG equations for the coefficients.

It is simplest to use dimensional regularization (and the MS scheme) in both the full and
the effective theory. At first sight it seems troubling to work without a hard cutoff and
integrate out to arbitrarily high energies even in the low-energy theory, which is not valid
at high energies. However, we know from Wilson that we can absorb arbitrary high-energy
physics into the couplings of Leff. By adjusting the couplings, we can thus obtain the correct
low-energy results despite the incorrect behavior of our amplitudes at high energies.

Let us use a toy model with a heavy and light scalar field to illustrate the above steps. Our
full theory is

L =
1

2
(∂µφL)2 − m2

2
φ2
L +

1

2
(∂µφH)2 − M2

2
φ2
H

− λL
4!
φ4
L −

λH
4!
φ4
H −

λHL
4
φ2
Lφ

2
H −

g

2
φHφ

2
L.

Note that L is symmetric under φL → −φL. To renormalize the theory we need to include
also

δL = A+BφH + Cφ3
H , (3.1)

but we assume that A, B, C are renormalized to zero (they are not relevant for the discussion).
Now let us follow the different steps to construct Leff:
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3.1. Tree-level matching

1. Low-energy degrees of freedom: φL, for energies E �M .

2. Effective Lagrangian

Leff =
1

2
(∂µφL)2 − m̃2

2
φ2
L −

λ̃

4!
φ4
L −

1

2

C2,4

M2
φL�

2φL

− 1

6!

C6,0

M2
φ6
L −

1

4!

C4,2

M2
φ2
L�φ

2
L +O

( 1

M4

)
.

To show that all other d = 6 operators reduce to these three one uses integration by
parts and drops total derivatives.

3. Matching. To extract the values of m̃, λ̃, C6,0, and C4,2 we will now calculate the two-,
four-, and six-point functions. The effect of C2,4 can be removed via a field redefinition,
see Sec. 3.2.

3.1. Tree-level matching

We denote the amplitude for the n-point function by Mn = −iΓn.

Effective theory computation

The two-point function is just the inverse of the propagator

iΓ2 = iG−1(p) = (p2 − m̃2). (3.2)

The four-point function corresponds to the scattering of four like particles, leading to

iΓ4 =

p2

p1

p4

p3

λ̃

+

C4,2

+

�
�
�

�
�
�

�
��
amputated (3.3)

= λ̃− C4,2

M2

1

3

[
(p1 + p2)2 + (p1 − p3)2 + (p1 − p4)2

]
, (3.4)

where the result for the diagram with C4,2 is derived in Appendix B. Finally, the six-point
function involves a contact term proportional to C6,0 and diagrams composed of two insertions
of λ̃, which we will not need to consider:

iΓ6 =
C6,0

M2
+ + . . . (3.5)
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3. Continuum effective theory

Full theory computation

The propagator in the full theory is

iΓ2 = iG−1(p) = (p2 −m2), (3.6)

so that
m̃ = m+O(λ), C2,4 = O(λ), (3.7)

where the second condition arises because C2,4 only leads to a p4 term in the two-point
function. The four-point function is given by

iΓ4 = λL + g g + + (3.8)

= λL + i(−ig)2

[
i

(p1 + p2)2 −M2
+

i

(p1 − p3)2 −M2
+

i

(p1 − p4)2 −M2

]
. (3.9)

Since pi �M at low energies, we can Taylor expand Γ4, leading to

iΓ4 = λL −
3g2

M2
− g2

M4

[
(p1 + p2)2 + (p1 − p3)2 + (p1 − p4)2

]
. (3.10)

Comparison with the EFT result gives our first non-trivial matching condition

λ̃ = λL −
3g2

M2
, C4,2 =

3g2

M2
. (3.11)

Finally, we have the matching of the six-point function, involving the diagrams

iΓ6 = + + . . . (3.12)

+ + + . . . (3.13)

The diagrams in the first line are one-particle-reducible with respect to the light field φL.
These diagrams are automatically reproduced since we matched the four-point function. Only
the diagrams in the second line will contribute to the matching on C6. Since the operator
does not involve derivatives it is sufficient to compute Γ6 for vanishing momenta (pi = 0).
The resulting matching condition is

C6,0

M2
= i(−ig)2(−iλHL)

( i

−M2

)2
× 90, (3.14)

C6,0 = 90λHL
g2

M2
. (3.15)

The combinatorial factor is given as 90 = 6! ×
(

1
2

)2 × 1
2 , because two permutations each at

the φ2
LφH and φ2

Lφ
2
H vertices are identical. This completes the construction of the effective

theory at tree level.
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3.2. Field redefinitions

3.2. Field redefinitions

With our matching computation we ensured that our effective theory reproduces the full
theory result for the off-shell Green’s functions. However, if we are only interested in phys-
ical quantities, such as scattering amplitudes, we can simplify the Lagrangian using field
redefinitions.

As an example, consider

φL →
[
1 +

α

M2
�
]
φL. (3.16)

Inserting this into Leff and neglecting 1
M4 terms, we get

Leff → Leff −
α

M2
φL

(
�+m2 +

λ̃

3!
φ2
L

)
�φL, (3.17)

where we used an integration by parts for the kinetic term. By choosing α = −1
2C2,4, we can

cancel the term −1
2
C2,4

M2 φ�2φ in Leff so that L′eff no longer contains this term:

Leff → Leff|C2,4→0 +
C2,4

2M2
φL(m2 +

λ̃

3!
φ2
L)�φL. (3.18)

Note that the effect of the field redefinition can be obtained by using the leading-order equa-
tion of motion (EOM) (

�+m2 +
λ̃

3!
φ2
L

)
φL = 0 (3.19)

in order to eliminate higher-power terms in the Lagrangian.
In general, using redefinitions

φ→ φ+
( 1

M2

)n
f(φ) = φ+ δφ (3.20)

generates

Leff → Leff +
( 1

M2

)n
f(φ)︸ ︷︷ ︸

δφ

[
�φ+m2φ+

λ̃

3!
φ3

]
︸ ︷︷ ︸

EOM, from δS
δφ

+O

((
1

M2

)n+1
)
, (3.21)

and allows one to systematically eliminate EOM terms from Leff.
These field redefinitions have to leave the physics content of the theory unchanged. This is

true because:

1. φ and φ′ have the same quantum numbers, so after inserting states

lim
x0→∞

〈0|T{φ(x1) . . .} |0〉 =
∑
x

〈0|φ(x1) |x〉 〈x|T{. . .} |0〉 (3.22)

the same amplitudes can be extracted from the theory, only the Z-factors 〈0|φ(0) |x〉 =
Z1/2 change.

2. The Jacobian det
(
δφ
δφ′

)
is trivial, at least in dimensional regularization (see below).
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3. Continuum effective theory

Let us illustrate the first point using an example. The tree-level 2→ 2 scattering amplitude
in φ4 theory is

M = = −λ̃ (3.23)

Let us now calculate this amplitude after the field redefinition φ→
(
1 + α

M2�
)
φ.

L′ = L − α

M2
φ
(
�+m2 +

λ̃

3!
φ2
)
�φ, (3.24)

which gives

M = + + . . .

︸ ︷︷ ︸
external leg correction,
removed by amputation

+ (3.25)

= −λ̃

1− α

M2

4!

3!
× 1

4

4∑
i=1

p2
i︸ ︷︷ ︸

4m2


(√

Z
)4

(3.26)

= −λ̃
(

1− α

M2
4m2

)(√
Z
)4
. (3.27)

To get the Z-factor, we need to evaluate the two-point function:

+ =
i

p2 −m2
− i 2α

M2

i

p2 −m2
(−p2)(−p2 +m2)

i

p2 −m2
(3.28)

=
i

p2 −m2

(
1 +

2α

M2
p2
)

=
i(1 + 2α

M2m
2)

p2 −m2
+ ”non-pole”, (3.29)

so that the wave-function renormalization becomes

Z = 1 +
2α

M2
m2. (3.30)

For the amplitude, we thus have

M = −λ̃
(

1− α

M2
4m2

)(
1 +

2α

M2
m2

)2

= −λ̃+O
( 1

M4

)
, (3.31)

precisely as before the field redefinition (at the order considered).

Finally, let us show why the Jacobian is trivial:∫
Dφ =

∫
Dφ′ det

(
δφ

δφ′

)
(3.32)
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3.3. Matching at higher orders

In our case, φ→ φ′ +
(

1
M2

)n
f(φ′),

δφ

δφ′
= δ(x− x′) +

( 1

M2

)n
f ′(φ′(x))δ(x− x′). (3.33)

The Jacobian can be written as

det

(
δφ

δφ′

)
=

∫
Dc
∫
Dc̄ exp

[
i

∫
ddx

∫
ddy c̄(x)

δφ

δφ′
c(y)

]
(3.34)

=

∫
Dc
∫
Dc̄ exp

[
i

∫
ddx c̄(x)

[
1 +

( 1

M2

)n
f ′(φ′)

]
c(x)

]
, (3.35)

where c, c̄ are Grassmann fields.

Since the term involving f ′ is suppressed by 1
M2 , it can be treated as a perturbation. The

corresponding “ghost” diagrams are loops of a “fermion” with “propagator” i
1 (i.e., the ghost

fields do not propagate since they do not have a kinetic term). Such loops that do not involve
a scale, e.g.,

∫
ddk

(
i
1

)n
, vanish in dimensional regularization, hence det( δφδφ′ ) = 1.

3.3. Matching at higher orders

The general method to perform the matching is always the same: compute the same quantity
both in the EFT and in the full theory and adjust the Wilson coefficients (“coupling con-
stants”) in the EFT in such a way that the results agree to the given order of the low-energy
expansion.

At the tree level, it is simple to understand that the procedure works: the heavy particles
are always far off-shell and their propagators get expanded into a polynomial. Since Leff

contains all higher-dimensional operators, it generates the most general polynomial contri-
bution to the amplitude and by adjusting the couplings, we reproduce the full theory result.
Schematically:

=

φ4

+

φ2�φ2

+ + . . . (3.36)

1

p2 −M2
= − 1

M2
− 1

M2

p2

M2
− . . . (3.37)

At higher orders, there are several interesting new features that emerge from the loop dia-
grams. Let us consider the self-energy diagram in the full theory

p− k

k

p

The following complications occur:
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3. Continuum effective theory

1. The loop momentum k can be small or large: the heavy propagator is not always off
shell.

2. Renormalization: there are UV divergences both in the full and effective theory, and we
thus have to renormalize all couplings/Wilson coefficients.

3. Loop diagrams are non-trivial (i.e., non-analytic) functions of external momenta and
masses, but the Wilson coefficients Ci can only depend on the high-energy scale M (Leff

must be local). Accordingly, the non-trivial parts of the amplitudes must be present in
the EFT loop computation, as they cannot be obtained from the Ci. In the end, this
has to work out because the low-energy dynamics of Lfull and Leff are the same, but it
would be nice to see this in an example.

4. Due to renormalization in Leff, the Wilson coefficients depend on the renormalization
scale µ: Ci = Ci(µ). The coefficients involve terms g2 log µ

M , λHL log µ
M etc.

To see how all this works in practice, we will now perform a one-loop matching computation
in the simplest possible setting: we will compute the two-point function and the one-loop
corrections to m̃, the mass of the light particle in Leff. The relevant diagrams are:

Full theory :

(a) (b) (c) (d)

λL λHL g2
g2

EFT :
λ̃

Diagram (a): Writing iΣ = −M for the two-point functions, the first contribution is given by

iΣ(a) = i(−iλL)
1

2

∫
ddk

(2π)d
i

k2 −m2
µ2ε, (3.38)

where the factor one half is the symmetry factor and µ2ε is the renormalization scale,
introduced to make λ dimensionless in d = 4− 2ε. Using the results from Appendix A
we find

iΣ(a) =
λL
2

(4π)−
d
2 Γ
(

1− d

2

)
(m2)

d
2
−1µ2ε

=
m2λL
32π2

[
−1

ε
+ γE − log(4π)− 1 + log

m2

µ2
+O(ε)

]
. (3.39)

Since −γE +log(4π) always appear together with the 1
ε term, and since they are numer-

ically not small, it is customary to remove not only the 1
ε terms (minimal subtraction
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3.3. Matching at higher orders

≡ MS scheme), but the entire combination (≡ MS scheme) by renormalization. One
way to achieve this, is to set µ2 = µ̄2eγE/(4π) so that

iΣ(a) =
m2λL
32π2

[
−1

ε
− 1 + log

m2

µ̄2
+O(ε)

]
. (3.40)

Diagram (b): The calculation is analogous to diagram (a), leading to

iΣ(b) =
M2λHL

32π2

[
−1

ε
− 1 + log

M2

µ̄2
+O(ε)

]
. (3.41)

Diagram (c): The expression is the same as diagram (a) apart from the additional heavy propagator

iΣ(c) = i
1

2
(−ig)2 i

−M2

∫
ddk

(2π)d
i

k2 −m2
µ2ε (3.42)

=
g2

32π2

m2

M2

[
1

ε
+ 1− log

m2

µ̄2
+O(ε)

]
. (3.43)

Diagram (d): This is the only non-trivial contribution, namely

iΣ(d) = i(ig)2

∫
ddk

(2π)d
i2µ2ε

[(k + p)2 −m2](k2 −M2)
. (3.44)

We follow the strategy described in Appendix A to bring the integral into standard
form, by introducing a Feynman parameter

1

[(k + p)2 −m2](k2 −M2)
=

∫ 1

0

dx

[(k + px)2 + x(1− x)p2 − xm2 − (1− x)M2︸ ︷︷ ︸
≡−∆(x)

]2
(3.45)

and shifting the integration variable by k → k − px. This yields

iΣ(d) = − g2µ2ε

(4π)d/2
Γ(ε)

∫ 1

0
dx[∆(x)]−ε (3.46)

=
g2

16π2

[
−1

ε
+ log

M2

µ̄2
+

∫ 1

0
dx log

xm2 + (1− x)M2 − x(1− x)p2

M2

]
(3.47)

=
g2

16π2

[
−1

ε
+ log

M2

µ̄2
− 1− p2

2M2
− m2

M2
log

m2

M2
+O

( 1

M4

)]
, (3.48)

where in the last step we expanded in 1/M2. To this end, it is easiest to first expand
in p2, which reduces the integral to∫ 1

0
dx

−x(1− x)p2

xm2 + (1− x)M2
+

∫ 1

0
dx log

xm2 + (1− x)M2

M2
(3.49)

= − p2

2M2
− 1 +

m2 log m2

M2

m2 −M2
+O

( 1

M4

)
. (3.50)
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3. Continuum effective theory

EFT diagram: Finally, the effective theory diagram reads

iΣ =
m2λ̃

32π2

[
−1

ε
− 1 + log

m2

µ̄2

]
. (3.51)

We now renormalize, i.e., absorb the 1
ε -pieces of Σ into the couplings of the full and effective

theory and then calculate the difference

∆ = iΣfull − iΣeff, (3.52)

to be absorbed into the couplings of Leff. Since we will end up also with a wave-function
renormalization, we write the effective theory Lagrangian as

Leff =
1

2
Z(∂µφ)2 − m̃2

2
Zφ2 − λ̃

4!
Z2φ4, (3.53)

with Z = 1 + O(λ) (the one-loop Z-factor in the full theory happens to be trivial). The
matching condition then reads

0 = ∆ = m2 − p2 − Zm̃2 + Zp2 + iΣ
(1-loop)
full − iΣ(1-loop)

eff . (3.54)

In order for this to work, all low-energy physics has to drop out of ∆. In particular, the
logm2 pieces in Σfull and Σeff have to cancel! Let us look at these terms

32π2

m2
∆ = logm2

[
λL −

3g2

M2
− λ̃
]

+ · · · (3.55)

In our tree-level calculation we found λ̃ = λL − 3g2

M2 , so our Leff indeed reproduces the low-
energy part of the full theory. The remaining terms are

∆ = m2−Zm̃2 +
1

16π2

[
g2
(

1 +
m2

M2

)
+
M2

2
λHL

](
log

M2

µ̄2
− 1
)
− p2 +Zp2− g2

32π2
p2. (3.56)

From the momentum-dependent term we can read off

Z = 1 +
g2

32π2
, (3.57)

and therefore

m̃2 = m2
(

1− g2

32π2

)
+

[
g2
(

1 +
m2

M2

)
+
M2

2
λHL

]
log M2

µ̄2 − 1

16π2
+ · · · (3.58)

Note the presence of the M2λHL contribution. The same contributions will also arise in the
physical mass mph determined by iΣ(p2 = m2

ph) = 0. If mph is small, this implies a large
cancellation. This is again the statement that small scalar masses are unnatural.

Expanding the full theory result to higher power in p2, one can determine the Wilson
coefficients of operators 1

2C2,2nφL�nφL. Note that in the matching for φL�2φL, a new effective

theory diagram , where ∝ φ2
L�φ

2
L, contributes.

By computing the four- and six-point functions one can then determine also λ̃, C4,2, and
C6,0 to one-loop accuracy. In this case, the number of diagrams becomes quite large. On the
other hand, for λ̃, the four-point function at vanishing momentum is sufficient.
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3.4. Power counting

3.4. Power counting

In the matching calculation we have assumed that the higher-order Lagrangians do not con-
tribute at leading power. At tree level, this is obvious, since the operators in the power-
suppressed Lagrangians have additional derivatives and/or fields. But in loop integrals the
momenta are large, so it is less obvious that higher-derivative terms are suppressed.

For instance, the contribution of 1
(M2)n

φ2
L�

nφ2
L to the two-point function at zero external

momentum reads

δΣ ∝ 1

(M2)n

∫
ddk

(k2)n

k2 −m2
, (3.59)

and the loop integral, in principle, extends over all scales. The advantage of dimensional
regularization is that the loop integrals in the EFT only depend on low-energy scales, therefore
by dimensional analysis δΣ ∝ (m2)d/2−1 × (m2)n × 1

(M2)n
, since scaleless integrals are set to

zero. Therefore, the loop contribution is indeed suppressed by
(
m2

M2

)n
.

Note that in a cutoff regularization

1

(M2)n

∫ Λ

ddk
(k2)n

k2 −m2
∝ Λd−2 × Λ2n

M2n
+ · · · , (3.60)

so that the loop contributions of higher-dimensional operators are not suppressed. The terms
that violate the tree-level power counting are trivial cutoff terms and can thus be subtracted,
but they make computations cumbersome.

In contrast, the power counting in dimensional regularization is very simple. To calculate
a quantity up to

(
1
M2

)n
accuracy, we need the Lagrangian up to

(
1
M2

)n
and the

(
1
M2

)n
corrections arise from diagrams with: a single vertex from L(n)

eff , or one from L(n−m)
eff and one

from L(m)
eff , or one from L(n−m1−m2)

eff and one from L(m1)
eff and L(m2)

eff etc.

3.5. Renormalization-group improved perturbation theory

The Wilson coefficients Ci in Leff depend on the coupling constants of the full theory as well
as the large energy scale M . The dependence on M is logarithmic. Schematically, we have

Ci(M,µ, λ) = C
(0,0)
i + λ(µ)

[
C

(1,1)
i log

M2

µ2
+ C

(1,0)
i

]
+ λ2(µ)

[
C

(2,2)
i log2 M

2

µ2
+ C

(2,1)
i log

M2

µ2
+ C

(2,0)
i

]
+ · · · ,

where the coefficients C
(n,m)
i (m ≤ n) are pure numbers, determined by the matching calcu-

lation. In our matching calculation for m̃ we found exactly this structure, except for the fact
that our full theory had several different couplings. The form of the result makes it obvious
that we should choose µ ≈M , otherwise perturbation theory will not work well because the
log M2

µ2 terms become large.

To understand better how to treat these logarithms, let us take a look at a computation in
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3. Continuum effective theory

the EFT. For the 2→ 2 amplitude at leading order, we get

M = + + + (3.61)

= −λ̃0

[
1 +

3λ̃0

32π2

(
−1

ε
+ log

m2

µ2
+ f(s, t, u)

)]
(3.62)

= −λ̃(µ)

[
1 +

3λ̃(µ)

32π2

(
log

m2

µ2
+ f(s, t, u)

)]
, (3.63)

where λ̃(µ) is the MS renormalized coupling and for simplicity we will write µ̄→ µ from now
on. The finite part of the amplitude can be written as

f(s, t, u) = V (s) + V (t) + V (u), V (s) =
1

3

∫ 1

0
dx log

m2 − x(1− x)s

m2
, (3.64)

with the Mandelstam variables

s = (p1 + p2)2, t = (p1 − p3)2, u = (p1 − p4)2, (3.65)

but its precise form does not matter for the following discussion.

To get reasonable higher-order corrections, we need µ ≈ m, which leads to conflicting
conditions:

1. matching requires µ ≈M ,

2. EFT matrix element require µ ≈ m,

3. starting point was m�M .

This problem would manifest itself in the full theory as terms of the form λn logn m2

M2 and

results in a breakdown of perturbation theory (in the MS scheme) for m � M , even if λ is
very small.

Fortunately, the RG in the EFT allows us to resum the logarithmically enhanced terms to
all orders by solving the RG evolution equations

dλ̃(µ)

d logµ
= µ

dλ̃(µ)

dµ
= β(λ̃(µ)) (3.66)

and
dCi(µ)

d logµ
= γij(λ̃(µ))Cj(µ). (3.67)

This second equation is a matrix equation. Operators of the same dimension “mix,” i.e., their
RG evolution is coupled.

The general strategy is then as shown in Fig. 3.5. Let us illustrate this procedure for the
leading-order four-point function. To get the β-function, we use

d

d logµ
M = 0, (3.68)
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3.5. Renormalization-group improved perturbation theory

Figure 3.1.: General strategy for matching in EFT.

since the physical amplitude is µ-independent. This gives

d

d log(µ)
λ̃(µ) = β(λ̃) =

3λ̃2(µ)

16π2
+ · · · , (3.69)

which can be solved via a separation of variables∫ λ̃(µ)

λ̃(µn)

dλ̃

λ̃2
=

3

32π2
log

µ2

µ2
n

, (3.70)

yielding

1

λ̃(µn)
− 1

λ̃(µ)
=

3

32π2
log

µ2

µ2
n

. (3.71)

The solution takes the form

λ̃(µ) =
λ̃(µn)

1− 3
16π2 λ̃(µn) log µ

µn

= − 1
3

16π2 log µ
Λ

, (3.72)

where Λ is the scale at which λ → ∞. Using (3.71), we can eliminate all logarithms in our
result:

M = −λ̃(µ)

[
1 + λ̃(µ)

(
1

λ̃(µ)
− 1

λ̃(m)

)
+

3λ̃(µ)

32π2
f(s, t, u)

]
(3.73)

= −λ̃(µ)

[
2− λ̃(µ)

λ̃(m)

]
︸ ︷︷ ︸

evolution from µ to m

+����O(λ̃2), (3.74)

25



3. Continuum effective theory

with µ ≈M . This is the leading-order result in RG improved perturbation theory. It resums

terms of the form λ̃ × λ̃n logn m2

µ2 . Note that the term λ̃2

32π2 f has been dropped: the reason

is that higher orders contain terms scaling as λ̃ × λ̃n logn−1 m2

µ2 ∼ λ̃2, which are of the same

size as λ̃2f . To include this term we should therefore resum those logarithms as well, which
is achieved by solving the evolution with the two-loop β-function:

dλ̃

d logµ
= β(λ̃) = λ̃

[
3

λ̃

16π2
− 17

3

( λ̃

16π2

)2
+ · · ·

]
, (3.75)

so that

3

16π2
log

µ

µn
=

1

λ̃(µn)
− 1

λ̃(µ)
+

17

9
× 1

16π2
log

λ̃(µ)

λ̃(µn)
+O(λ̃). (3.76)

In the presence of large scale hierarchies large logarithms of scale ratios destroy the perturba-
tive expansion. The use of an EFT allows one to disentangle the different scales and, by using
RG evolution, resum the logarithmically enhanced contributions. To avoid large logarithms,
low-energy calculations are never performed using the SM Lagrangian directly, but an effec-
tive Lagrangian obtained by “integrating out” heavy particles such as t-quarks, Higgs, W±,
Z0. Having worked out the construction of an EFT in our scalar-field toy example, we are
now ready for real-life applications of this technology. To finish our discussion, let us repeat
the steps needed to construct the effective theory:

1. Identify the degrees of freedom at low energy.

2. Construct the most general L with these degrees of freedom and the symmetries of the
full theory.

a) Higher-dimensional operators in Leff are suppressed by ( 1
M )n, where M is a charac-

teristic high-energy scale. Their contribution to observables is suppressed by ( EM )n,

so only a finite number of terms is needed for a given accuracy ε: n ≈ log ε
log(E/M) .

b) Field redefinitions: higher-order terms in Leff that vanish by the leading-order
EOM do not contribute to physical amplitudes and can be omitted from Leff.

3. Matching: if possible, determine the Wilson coefficients of the operators in Leff by
computing a number of quantities in both the full and the effective theory. Adjust the
couplings in Leff to reproduce the full theory result. If field redefinitions have been used,
only physical quantities match, otherwise arbitrary Green’s functions.

4. RG improvement: compute the anomalous dimensions and solve the RG equations for
the operators in Leff, i.e.,

Ci(µ) =
∑
j

Uij(µn, µ)︸ ︷︷ ︸
Evolution

from µn ≈M
to µ ≈ E

resums logarithms

Cj(µn)︸ ︷︷ ︸
no large logarithms

for µn ≈M

. (3.77)
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3.5. Renormalization-group improved perturbation theory

Note:

Since the higher orders contain terms like λ̃n logn m2

µ2 substituting 3
16π2 log m2

µ2 = 1
λ̃(µ)
− 1

λ̃(m)

only at O(λ̃) does not give the full result. Instead, follow the procedure outlined on in Fig. 3.5:

1. Solve the RG for λ̃,

λ̃(µ) =
λ̃(µn)

1− 3
16π2 λ̃(µn) log µ

µn

for µn ≈M. (3.78)

2. Choose µ ≈ m. For µ = m, the result for M does not contain large logarithms.

3. For µ = m:

M = −λ̃(m)

[
1 +

3λ̃(m)

32π2
f(s, t, u)

]
. (3.79)
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4. The Standard Model at low energies

In this chapter we turn to low-energy effective theories for the interactions of the Standard
Model (SM). In each case, the EFT approach simplifies calculations for a given sector of
the SM, and is sometimes the only viable strategy to perform analytic calculations. We will
first treat electromagnetism (Euler–Heisenberg theory), before turning to weak and strong
interactions.

4.1. Euler–Heisenberg theory

Let us consider the QED Lagrangian

LQED[Aµ, ψ] = −1

4
FµνFµν + ψ̄(i /D −m)ψ, (4.1)

where

iDµ = i∂µ − eAµ, (4.2)

Fµν = ∂µAν − ∂νAµ =
i

e
[iDµ, iDν ]. (4.3)

Aµ is the electromagnetic potential and ψ the electron field. Note that LQED is the most
general renormalizable Lagrangian for an electron interacting with the photon field. In the
SM, there are many other heavier charged particles (quarks, W±, µ, τ), but according to EFT
logic, the contributions of all the other fields only appear via 1

M suppressed operators (where
M = mτ ,Mπ, . . . ). In other words, LQED is the leading-order effective Lagrangian describing
the interactions of e± and γ, and it will be appropriate as long as E � 100 MeV ≈ mµ ∼Mπ.

Many practical applications only involve photons at even smaller energies E � 2me. In
this case electron–positron pairs appear only as virtual corrections and we can integrate them
out, i.e., construct an effective theory involving only photons. To do so, we first encounter an
interesting complication: since electron number is conserved, a given state, say with 5e−, will
be there even for E → 0. To describe such a situation correctly, one has to use non-relativistic
EFT, to which we will turn in a later chapter. For now, we concentrate on the sector with
zero net electrons, in which e± only appear as virtual particles. To do so, we can just describe
the electrons as an external current and add a term

LJ = −eAµJµ (4.4)

to the Lagrangian. This description should work for macroscopic charged objects, as long
as we do not excite higher energy levels in their interaction with the photon. Note that this
interaction is only consistent if ∂µJ

µ = 0. Under gauge transformations

Aµ → Aµ + ∂µφ, (4.5)
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4.1. Euler–Heisenberg theory

so ∫
d4xAµJ

µ →
∫
d4xAµJ

µ −
∫
d4xφ∂µJ

µ︸ ︷︷ ︸
=0

. (4.6)

Examples of configurations fulfilling ∂µJ
µ = 0 are

1. static charge distribution: Jµ = (ρ(r),0)

2. static current: Jµ = (0, j(r)) with ∇ · j = 0

If we now consider low-energy photons in the background of a source Jµ, we should be able
to describe their interactions with the effective Lagrangian

Leff[Aµ, Jµ] = L(4) + L(6) + L(8) + . . . (4.7)

The leading-order Lagrangian is

L(4) = −Z
4
FµνFµν − eAµJµ (4.8)

and describes free photons. Let us now construct the operators of dimension 6 and 8, whose
effects are suppressed by O(m−2

e ) and O(m−4
e ), respectively. To obtain Leff, one writes down

all possible terms of given dimension. The number of terms can be reduced to a minimal set
using

(i) Symmetries, e.g., charge conjugation. QED is invariant under

e→ −e, Aµ → −Aµ, Fµν → −Fµν ,

and so has to be the effective theory.

(ii) Properties of Fµν , e.g., its antisymmetry Fµν = −F νµ and the Bianchi identity

∂µFνσ + ∂νFσµ + ∂σFµν = 0.

(iii) The leading-order EOM ∂µF
µν = Jν .

We start with the d = 6 terms. Because of charge conjugation symmetry, Leff must be even
in Fµν . This is the EFT equivalent of Furry’s theorem, which states that amplitudes with an
odd number of photons vanish in QED.

. . .

2n+ 1

1

2 3

+

. . .

2n+ 1

1

2 3

= 0 (4.9)

This leaves us with terms of the form ∂2F 2. Using integration by parts, we can always achieve
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4. The Standard Model at low energies

that derivatives are not contracted with the field strength on which they act. This leaves two
possible terms:

O1 = Fµν�Fµν , (4.10)

O2 = (∂ρFµν)(∂µFρν). (4.11)

Using the Bianchi identity on O2, we find

O2 = (∂ρFµν) [−∂ρFνµ − ∂νFµρ] (4.12)

= Fµν�Fνµ − ∂ρFµν∂νFµρ + total derivative (4.13)

= −Fµν�Fµν − ∂ρF νµ∂νFρµ + total derivative (4.14)

= −O1 −O2 + total derivative, (4.15)

so that the terms O1 and O2 are equivalent, 2O2=̂ − O1. In addition, we can write down
terms

O3 = JµJ
µ, O4 = ∂µF

µνJν , (4.16)

since Jµ has dimension d = 3. These two terms are equivalent upon using the EOM ∂µF
µν =

Jν . Moreover, up to total derivatives also O2 can be brought into the form O2=̂∂µF
µν∂ρFρν ,

in such a way that all operators become equivalent to O3. Our final result can therefore be
expressed as

L(6) =
C0

m2
e

JµJµ, (4.17)

which corresponds to a contact interaction between the source and is irrelevant for photon
propagation or scattering.

The first terms involving photons appear for d = 8

L(8) =
C1

m4
e

(
FµνFµν

)2
+
C2

m4
e

FµνF
νσFσρF

ρµ. (4.18)

In four space-time dimensions, we can rewrite

FµνF
νσFσρF

ρµ =
1

4
(FµνF̃µν)2 +

1

2
(FµνFµν)2 , (4.19)

where F̃µν = 1
2ε
µνρσFρσ. However, since εµνρσ is only defined in d = 4, it is preferable not to

use this relation.1 Expressed in terms of E and B the two structures are

FµνFµν = −2
(
E2 −B2

)
, F̃µνFµν = −4E ·B. (4.20)

The two terms in L(8) describe four-point interactions, but since they are suppressed by
O(m−4

e ), they will be very weak at low energies where the EFT applies. In QED, these
interactions arise from fermion loops

1To derive it, use:

εµ1µ2µ3µ4ε
ν1ν2ν3ν4 = −

∣∣∣∣∣∣∣
δν1µ1

δν2µ1
. . .

...
δν1µ4

. . . δν4µ4

∣∣∣∣∣∣∣
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4.1. Euler–Heisenberg theory

Before considering these diagrams, let us study the low-energy γγ → γγ scattering cross
section. This cross section scales according to

dσ ∼
(

1

m4
e

)2

E6e8, e8 ∝ α4. (4.21)

The factor E6 is required to get the correct dimension dσ ∼ E−2. An explicit computation
yields the unpolarized cross section:

dσγγ
dΩ

=
1

4π2
(48C2

1 + 40C1C2 + 11C2
2 )
E6

m8
e

× (3 + cos2 θ)2, (4.22)

where cos θ is the scattering angle in the center-of-mass system. So far, γγ scattering for
E < me has not been observed experimentally, but there are plans to measure it using
intense lasers [9].2

To determine the Wilson coefficients C1, C2, we need to perform a matching computation.
It is simplest to consider the γγ scattering amplitude directly. Since we only need to extract
two numbers, it suffices to evaluate the forward amplitude γ(p1) + γ(p2)→ γ(p1) + γ(p2) and
to consider two different helicity configurations. In QED, the amplitude is

Aµ1µ2ν1ν2 = 2×

k + p2

k k

k − p1

p2, µ2

p1, µ1

p2, ν2

p1, ν1

+ 2×

k + p2

k k + p2 − p1

k − p1

p2, µ2

p1, µ1

p1, ν1

p2, ν2

+ 2×

k − p1

k k − p1 + p2

k − p1

p1, ν1

p1, µ1

p2, µ2

p2, ν2

(4.23)

The factors of two arise because an identical contribution is obtained from the diagram with

reversed fermion flow � vs. 	. To get the scattering amplitude, one then has to contract with
polarization vectors

A = Aµ1µ2ν1ν2εµ1εµ2ε
∗
ν1
ε∗ν2
. (4.24)

For matching purposes, we can consider for instance

A1 = gµ1µ2gν1ν2Aµ1µ2ν1ν2 , A2 = gµ1ν1gµ2ν2Aµ1µ2ν1ν2 , (4.25)

2At higher energies, γγ scattering has been seen in heavy-ion collisions [10,11].
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4. The Standard Model at low energies

in both the full and the effective theory and then solve for C1, C2. The computation can be
further simplified by expanding the QED diagrams in the small external momenta, which can
be done on the integrand level in this case. After the expansion, the necessary integrals all
have the form ∫

ddk
(k2)α

(k2 −m2
e)
β

and are obtained directly from Appendix A, leading to

C1 = − 1

36
α2, C2 =

7

90
α2. (4.26)

In particular, the result for the one-loop amplitude is finite and does not contain any loga-

rithmic corrections proportional to log µ2

m2
e
. In the EFT we can directly understand the reason

for this cancellation: the only loop in the EFT from L(8) is

L(8)
= 0, (4.27)

since the photon loop only contains scaleless integrals. Other loop diagrams are not possible
because a second vertex from L(8) would give an additional m−4

e suppression and L(4) and
L(6) do not contain interactions. The operators in L(8) are thus not renormalized. Plugging
in C1 and C2 into our earlier result for the cross section, one has

dσγγ
dΩ

= 139
( α2

180π

)2(
3 + cos2 θ

)2E6

m8
e

. (4.28)

4.2. Decoupling of heavy flavors

The quarks and leptons in the SM appear in three generations. For reasons we do not under-
stand, the masses of the fermions are quite hierarchical m1 � m2 � m3, e.g., me = 0.5 MeV,
mµ = 106 MeV, mτ = 1777 MeV. An important generalization of the Euler–Heisenberg EFT
is the EFT obtained from integrating out heavy flavors. For QED at different energies, one
uses

E & mτ LQED[τ, µ, e, A]
↓

mτ & E & mµ Leff
QED[µ, e,A]

↓
mµ & E & me Leff

QED[e,A]

↓
me & E LEuler–Heisenberg[A]

Since Mπ ∼ mµ, one needs to also consider strong interaction effects once one includes the
muon in the Lagrangian, but we will ignore this complication for the moment and start with
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4.2. Decoupling of heavy flavors

Leff
QED[µ, e,A] and construct Leff

QED[e,A]. We will then discuss how this Lagrangian can be
used to search for physics beyond the SM and how the analog construction works in the QCD
case.

4.2.1. Heavy flavors in QED

The leading-order Lagrangian Leff
QED[e,A] is just the QED Lagrangian

LQED = ψ̄(i /D −me)ψ −
1

4
FµνF

µν , (4.29)

which contains the two parameters e and me to be determined by matching. At higher order,
we get the same photonic operators as in the Euler–Heisenberg case. In addition, there are
now operators containing fermion fields. Up to operator dimension d = 6, we have

ψ̄ΓµDµψ, ψ̄ΓµνDµDνψ, ψ̄ΓµνρDµDνDρψ, ψ̄Γ1ψψ̄Γ2ψ, (4.30)

where the Γ are arbitrary Dirac matrices. At d = 4, the only possibility is ψ̄i /Dψ. At d = 5
one has

O1 = ψ̄
1

2
[γµ, γν ]DµDνψ = ψ̄(−iσµν)

1

2
[Dµ, Dν ]ψ (4.31)

=
e

2
ψ̄σµνFµνψ, (4.32)

O2 = ψ̄
1

2
{γµ, γν}︸ ︷︷ ︸
gµν

DµDνψ, (4.33)

where we used Eq. (4.3) for the covariant derivatives. O1 + O2 = ψ̄ /D /Dψ can be eliminated
using the EOM i /Dψ = mψ, so we only need to consider one operator, e.g., O1. It turns
out that the Wilson coefficients of O2 vanishes for me = 0. The reason is that LQED has a
symmetry ψ → eiαγ5ψ, ψ̄ → ψ̄e+iαγ5 for me = 0 and O1 violates this symmetry. So we only
need to consider the d = 6 operator Omag = meψ̄σ

µνFµνψ. As a side remark, we note that
the axial symmetry ψ → eiαγ5ψ is not a symmetry of the theory, but only of the Lagrangian
because the path-integral measure is not invariant. However, the measure for ψ is the same
in the full and effective theory, so that this axial anomaly does not affect our argument. In
addition, we have operators

O(n) = ψ̄Γ(n)ψψ̄Γ(n)ψ (4.34)

with Γ(n) = γ[α1γα2 . . . γαn] (totally antisymmetrized) at d = 6. Because of axial symme-
try, the terms with even n will have coefficients ∝ me. The operators with three covariant
derivatives all reduce to O′2, O(1), and O(3). In particular

ψ̄∂σFµνγ
[µγνγσ]ψ = 0 (4.35)

from the Bianchi identity. Accordingly, we conclude that, up to terms suppressed by at least
m−3
µ , all effects of physics at scales E � mµ can be absorbed into the electron mass and the

electromagnetic coupling, as well as the Wilson coefficients of Omag, O(1), and O(3).
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4. The Standard Model at low energies

Let us now discuss the physics associated with Omag and how the effects of physics be-
yond the Standard Model manifests themselves in Cmag. For this purpose, we consider the
interaction of an electron with a background electromagnetic field

p1

= ū(p2)Γµ(p1, p2)u(p1)× (−ieAµ), (4.36)

where the independent Dirac structures are

Γµ = Aγµ +B(p1 + p2)µ +C(p1 − p2)µ +A′γµγ5 +B′(p1 + p2)µγ5 +C ′(p1 − p2)µγ5. (4.37)

The coefficients A′, B′, C ′ are zero because of parity invariance of QED. Additional structures
involving /p1

or /p2
can be eliminated using the EOM /pu(p) = meu(p). Furthermore, current

conservation implies
qµū(p2)Γµu(p1) = 0 = Cq2 ⇒ C = 0. (4.38)

We are thus left with two functions A(q2) and B(q2). It is customary to write Γµ in the form

Γµ = F1(q2)γµ +
i

2me
σµνqνF2(q2), q = p2 − p1. (4.39)

At tree level in the EFT, we have F1(q2) = 1 and F2(q2) = Cmagm
2
e, where we wrote

Lmag =
Cmag

4
Omag =

Cmag

4
meψ̄σ

µνFµνψ, (4.40)

while in QED F1 = 1 already at tree level as well, while F2 is only generated by loop
contributions. To understand the meaning of F1 and F2, let us consider the non-relativistic

limit p1, p2 → 0. In the basis γ0 =

(
1

−1

)
, γi =

(
σi

σi

)
, one has

u(p) =
√
p0 +me

(
χs

σ·p
p0+me

χs

)
=
√

2me

(
χs
0

)
+O

(
p
)
. (4.41)

Moreover, using the Gordon identity

ū(p2)γµu(p1) = ū(p2)

[
(p1 + p2)µ

2me
+

i

2me
σµνqν

]
u(p1) (4.42)

we can replace the γµ term in favor of (p1+p2)µ, which is easier to handle in the non-relativistic
expansion

Aµ
(p1 + p2)µ

2me
ū(p2)u(p1) = 2meA

0χ†sχs +O(p2), (4.43)

and

Aµū(p2)
i

2me
σµνqνu(p1) ∼= Aiū(p2)

−1

4me
[γi, γj ]qju(p1) (4.44)

∼= −
Ai

4me
2meχ

†
sσ
kχs2iε

ijkqj (4.45)

= −iAiqjχ†sσkχsεijk (4.46)

= −χ†sσ ·B(q)χs, (4.47)
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4.2. Decoupling of heavy flavors

where Bk(q) = −iεijkqiAj(q)=̂ (∇×A(q))k and we used [σi, σj ] = 2iεijkσk. The QM Hamil-
tonian describing the interaction of an electron with an electromagnetic field contains a term

H = −ge
e

2me
S ·B = −µ ·B. (4.48)

For an electron S = σ
2 , and comparing with our expression for ūΓµu(−ieAµ) (while accounting

for the spinor normalization 2me), we find

ge = 2[F1(0) + F2(0)] = 2 + 2F2(0). (4.49)

The deviation of the gyromagnetic ratio ge from 2 is called the anomalous magnetic moment

ae =
ge − 2

2
. (4.50)

It receives contributions from quantum corrections and from the operator Omag, whose Wilson
coefficient encapsulates the contribution from heavier states. Because it is sensitive to such
corrections from heavier states, precision measurements of anomalous magnetic moments are
used to search for physics beyond the SM.

Let us take a look at the different contributions to ae. First, there are QED and hadronic
contributions:

e
→ ae = α

2π = 10−3 [12] (Even the O(α5) corrections are known [13]!)

µ−e
→ 1

45
m2
e

m2
µ

(
α
π

)2

e
hadronic → m2

e4Chadronic
mag (obtained from experimental data)

Next, there are electroweak corrections:

e

Ze
ν

W

e

e

He
∝ α

π
m2
e

M2
W

In addition to SM contributions, there could also be physics beyond the SM, e.g., super-
symmetry (SUSY):
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4. The Standard Model at low energies

ẽ

χ̃0
e

χ̃−

ν̃

χ̃−

e
∝ α

π
m2
e

m̃2

These contributions decouple with the heavy mass scale m̃, but could lead to deviations
from the SM prediction that can be detected in experiment.

Since (me/MW )2 ∼ 4 × 10−11, the weak effects are very small for the electron g − 2. The
effect of higher-mass particles are often enhanced by (

mµ
me

)2 ≈ 4× 104 in the muon g− 2. The
current world average after the release of Run 1 data from the Fermilab E989 experiment [14]
differs from the SM prediction [15] by 4.2σ, providing hints for contributions beyond the SM.

4.2.2. Heavy flavors in QCD

The quark masses are very hierarchical and for many application one will need to integrate
out the heavy flavors mt ' 173 GeV and mb ' 5 GeV. The masses of these quarks are
large enough that the matching can be performed perturbatively. For the charm quark with
mc ' 1.3 GeV, αs(mc) ' 0.32, this is also true, but the corrections will be significant. Let
us first discuss Leff up to dimension 6 and then the matching for the d = 4 Lagrangian. All
the operators found in QED are also allowed in QCD. The effective QCD Lagrangian after
integrating out the top quark has the form

Ld=4 = −1

4
GaµνG

µν,a +

5∑
f=1

ψ̄f (i /D −mf )ψf . (4.51)

This is simply QED with 5 flavors.

For d = 6, we have the operators

Off
′

(5i) = ψ̄fγ
[µ1 . . . γµi]ψf ψ̄f ′γ[µ1

. . . γµi]ψf ′ , (4.52)

Off
′

(0i) = ψ̄f t
aγ[µ1 . . . γµi]ψf ψ̄f ′ t

aγ[µ1
. . . γµi]ψf ′ . (4.53)

Since QCD does not distinguish the flavors,3 the Wilson coefficients of Off
′

(5i), O
ff
′

(0i) are inde-
pendent of the flavor indices, i.e., we only need the two operators

O(5i) =
∑
ff ′

Off
′

(5i), O(0i) =
∑
ff ′

Off
′

(0i). (4.54)

As in QED, we get

Omag =
∑
f

mf ψ̄fσ
µνGaµνt

aψf , (4.55)

but there is one additional operator, namely

O3 = fabcGaµνG
νσ
b Gc,µσ , (4.56)

3Except for the quark masses, which can be set to zero for the matching computation
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4.3. Effective weak Hamiltonian

which arises from the non-Abelian nature of QCD. The leading contributions to the Wilson
coefficients of O(01) and O3 originate from

t
t t

Let us now discuss the matching for Ld=4, which contains as Wilson coefficient the coupling

constant gs and mf , and concentrate on αs(µ) = g2
s(µ)
4π . We denote the coupling by α

(nf )
s (µ)

to distinguish αs in the theory with nf = 6 from α
(5)
s (µ) in the theory where the top quark is

integrated out. Then we proceed as in our scalar toy model. At a scale µm ≈ mt one derives
a relation

α(5)
s (µm) = α(6)

s (µm)ξ−1
A

[
α(6)
s (µm)

]
. (4.57)

The simplest way to obtain ξA is to compute the gluon propagator in both theories (“os”
refers to “on-shell” scheme):

Gµν =
iZos

A

p2
(−gµν + . . . ). (4.58)

Rescaling the coupling by ξA is the same as rescaling the gluon field. One can then show that

ξ
(0)
A =

Z
(6)
A

Z
(5)
A

with ZA =
1

1−Π(0)
, (4.59)

where Π(0) is the polarization function evaluated at virtuality q2 = 0. If one chooses µm =
mt(µm) the expression for ξA is especially simple

ξA(mt) = 1 +

(
13

3
CF −

32

9
CA

)
TF

(
α(mt)

4π

)2

, (4.60)

where CF = (N2
c − 1)/(2Nc) = 4/3, CA = Nc = 3 are the Casimir invariants of the funda-

mental and adjoint representations, respectively, and TF = 1/2 is the normalization of the
generators.

Note that the QCD coupling runs differently for nf = 5 and nf = 6:

µ
dαs(µ)

dµ
= β(αs(µ)), (4.61)

β(αs) = −2αs

[
β0

(αs
4π

)
+ β1

(αs
4π

)2
+ . . .

]
, (4.62)

with β0 = (11CA − 4nfTF )/3 and β1 = 2
[
17C2

A − nfTF (10CA + 6CF )
]
/3.

4.3. Effective weak Hamiltonian

Let us now discuss the weak interactions at low energies. In the SM, the weak and electro-
magnetic interactions are described by a SU(2)L×U(1)Y gauge theory, which is broken down
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4. The Standard Model at low energies

to U(1)em by the Higgs mechanism, which gives masses to the W± and Z0 bosons. A detailed
introduction to the SM is beyond the scope of this lecture. The only information needed for
our discussion is the charged-current coupling of W± bosons to fermions. It has the form

Lcc = − g2

2
√

2
(J+
µW

+µ + J−µW
−µ), (4.63)

where

J+
µ = (J−µ )† = (ūd′)V−A + (c̄s′)V−A + (t̄b′)V−A + (ν̄ee)V−A + (ν̄µµ)V−A + (ν̄ττ)V−A (4.64)

and (ūd′)V−A = ūγµ(1 − γ5)d′, etc. The states d′, s′, b′ are not mass eigenstates, i.e., the
quadratic part of LSM is not diagonal. The CKM4 matrix connects (d′, s′, b′) to the mass
eigenstates (d, s, b) d′s′

b′

 =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

ds
b

 = VCKM

ds
b

 . (4.65)

The matrix is unitary, so VCKMV
†

CKM = 1. It can be further simplified by phase redefinitions
of the fermion fields in Lcc and has 3× 3− (2× 3− 1) = 4 physical parameters. Its structure
is reflected by the Wolfenstein parameterization, which was designed to show the hierarchy
of the different matrix elements:

V̂CKM =

 1− λ2

2 λ Aλ3(ρ− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O
(
λ4
)
, (4.66)

with

λ ' 0.225, ρ ' 0.139, A ' 0.81, η ' 0.342.

This form is only approximately unitary, up to higher orders in λ. The parameters of the
matrix correspond to three rotations and one complex phase, which leads to CP violation.
Similarly, the neutrinos νe, νµ, and ντ are not mass eigenstates. The corresponding mixing
matrix is called PMNS matrix (Pontecorvo–Maki–Nakagawa–Sakala), but will not play a role
in what follows.

Let us first work at tree level and neglect QCD effects. Then the effective weak Lagrangian
can be obtained by integrating out the W± and Z fields. The resulting effective Lagrangian
is

Leff = − g2
2

8M2
W

[
J−µ J

+µ +
1

M2
W

J−µ (∂µ∂ν − gµν�)J+
ν + . . .

]
(4.67)

where
g2
2

8M2
W

= GF√
2

defines the Fermi constant GF = 1.166× 10−5 GeV−2. Diagrammatically,

this arises from

4Cabibbo–Kobayashi–Maskawa matrix, Nobel Prize in 2008.
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4.3. Effective weak Hamiltonian

ν

d

e

u

p2�M2
W−→

ν

d

e

u

where the W -propagator is expanded as

−i
p2 −M2

W

[
gµν − pµpν

M2
W

]
=

i

M2
W

[
gµν − 1

M2
W

(pµpν − p2gµν) +O
(

1

M4
W

)]
, (4.68)

so that already the leading terms in Leff are irrelevant operators of d = 6 (recall that the
fermion field has d = 3/2). Indeed the coefficient of the four-fermion operators GF ∼ 1

M2
W

shows the expected behavior. The fact that these are not marginal or relevant operators
explains the apparent weakness of the interaction at low energies. At high energies, on the
other hand, the weak-interaction effects are as strong as electromagnetic interactions. Because
of the 1

M2
W

suppression the leading-order d = 6 terms are good enough for most applications.

Since it changes lepton and quark flavors, Leff governs all decays of heavy leptons and hadrons,
such as

µ− → e− + ν̄e + νµ, (4.69)

π− → µ− + ν̄µ, (4.70)

n→ p+ e− + ν̄e. (4.71)

The PDG lists hundreds of pages of various hadron decays. In the SM all such decays that
proceed via the weak interactions are governed by GF and the four parameters in the CKM
matrix. If one manages to evaluate the strong-interaction effects in such decays, they offer
many opportunities to search for physics beyond the SM. An important step is to include
QCD corrections to the effective Lagrangian. To do so, one has to

1. include a complete set of operators, not only those present at tree level,

2. perform a matching computation to obtain the Wilson coefficients,

3. solve the RG equation for the coefficients to resum large logs.

We will now discuss two examples that illustrate how the construction works in the general
case.

4.3.1. Leptonic decays

Let us consider the operator relevant for π− → µ− + ν̄µ, which is based on the quark-level
transition ūd→ ν̄µµ

−. The tree-level Leff is

Leff = −GF√
2
Vud(ūd)V−A(µ̄νµ)V−A. (4.72)
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4. The Standard Model at low energies

It turns out that this is the only operator with this flavor structure: the weak interactions
only couple to left-handed fields ψL = 1

2(1− γ5)ψ and the QCD interactions conserve helicity
for vanishing quark masses LQCD = ψ̄Li /DψL + ψ̄Ri /DψR. Chirality violating operators are
suppressed by powers of the quark masses. The only possible Dirac bilinears are ψ̄Lγ

µψL =
−ψ̄Lγµγ5ψL and ψ̄LψL = ψ̄Lσ

µνψL = 0. This leaves as operators only

ūLγ
µdL µ̄LγµνL = ūLγ

µνL µ̄LγµdL. (4.73)

The fact that the two operators are equal is an example of Fierz identities, which follow from
a rearrangement of the Dirac structures.

Not only is there just a single operator, but also the matching is trivial since all QCD
corrections are the same in the full and the effective theory:

u

d

ν

µ

←→

u

d

ν

µ

Accordingly, there are no QCD corrections to Leff. QCD effects only arise in the matrix
element

〈0| ūγµ(1− γ5)d
∣∣π−(p)

〉
= −〈0| ūγµγ5d

∣∣π−(p)
〉

(4.74)

= −ifπpµ = −i
√

2Fπp
µ. (4.75)

The matrix element Fπ is called the pion decay constant. By measuring the pion decay rate

Γ(π → µν) =
G2
F

4π
F 2
πm

2
µMπ

(
1−

m2
µ

M2
π

)
|Vud|2 (4.76)

one can then determine the combination |Vud|Fπ. Similarly, one obtains |Vcd| from D− → µ−ν̄,
|Vub| from B− → τ−ν̄, and |Vus| from K− → µ−ν̄, in combination with the respective decay
constants.

4.3.2. Hadronic decays

Let us consider next the decay B̄(0) → D−s π
+, based on the b → uc̄s quark-level transition.

In this case there are two operators that differ by their color structure

O1 = s̄iLγµc
i
Lū

j
Lγ

µbjL, (4.77)

O2 = s̄iLγµc
j
Lū

j
Lγ

µbiL, (4.78)

where the color indices i and j are summed over. Note that

s̄Lγµt
acLūLγ

µtabL =
1

2
O2 −

1

2Nc
O1, (4.79)
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4.3. Effective weak Hamiltonian

which follows from the identity

taijt
a
kl =

1

2

(
δilδjk −

1

Nc
δijδkl

)
(4.80)

for the SU(3)c generators. As we will see, the matching in this case is now non-trivial and
we write

Leff = −4GF√
2
V ∗csVub

[
C1(µ)O1 + C2(µ)O2

]
. (4.81)

At tree level one has C1 = 1, C2 = 0, which follows by the same argument as for the leptonic
example discussed before. To obtain the one-loop coefficients, however, one has to perform a
matching computation, i.e., one has to compute the quark currents in both the full and the
effective theory.

Full theory:

c

b

s

u

(a) (b) (c)

EFT:

(a) (b) (c)

+ ”mirrored” diagrams

The difference between the full and the effective-theory results is absorbed into C1 and C2.
Since C1, C2 are independent of mq, we can set all quark masses to zero. Furthermore, also
any values for the external momenta will work, with the simplest choice pi = 0. In this case
diagram (a) in the full theory and all diagrams in the effective theory vanish, because they
are scaleless ∫

ddk
1

k2

1

/k
Γ

1

/k
Γ = 0 =

1

εUV
− 1

εIR
, (4.82)

which amounts to a cancellation of IR and UV divergences in dimensional regularization.
Since the IR divergences are a low-energy property of the theory, they are present in both
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4. The Standard Model at low energies

the full and the effective theory, and thus cancel in the matching. For pedagogical reasons we
will keep the pi non-zero, but use the same value for all legs. Let us start with diagram (b)
in the full theory

(b) =

p

p

k

c

b

s

u

σ

ρ

ν

µ

(4.83)

= i2
GF√

2
V ∗csVub

∫
ddk

(2π)d
−i
k2

−i
k2 −M2

W

i

(p+ k)2

i

(p− k)2

× ūγµ(1− γ5)(/p+ /k)igst
aγρb× s̄γν(1− γ5)(/p− /k)igst

aγσc (4.84)

× gρσ
[
gµν −

kµkν
M2
W

]
.

Some remarks are in order:

1. This is an amputated Green’s function, the spinors ūΓ1b s̄Γ2c are only there to remind
ourselves which color and spin index goes where.

2. We are using Feynman gauge for QCD and unitary gauge for the W -propagator. The
kµkν/M2

W term does not contribute to the sum of the diagrams, so we will omit it.

3. The color structure is ta ⊗ ta. To rewrite this in the form of O1 and O2, we use the
identity (4.80).

4. To simplify the Dirac structure one needs identities such as [Γ = γα(1− γ5)]

Γγβγµ ⊗ Γγβγµ = 16Γ⊗ Γ. (4.85)

The coefficient can be derived by taking traces Tr[AΓγβγµBΓγβγµ], Tr[AΓBΓ] for some
Dirac matrices A and B, e.g., A = B = γ5.

5. Without the kµkν/MW term, the diagram is finite, so we only need its value for d = 4.

The diagram (b) in the effective theory, on the other hand, is divergent, as it behaves like∫
ddk

1

k2

1

/p− k
1

/p+ k
∼
∫
ddk

k4
∼ 1

ε
+ log

µ2

p2
. (4.86)

This leads to some technical issues:

1. The Dirac basis can be thought of as all totally antisymmetric products of γ matrices.
In d dimensions, one can also write down antisymmetric products of more than four
γ matrices, which are not necessary in four dimensions. Operators with such Dirac
structures are called evanescent. One can use a renormalization scheme in which their
physical matrix elements vanish, but they need to be included in Leff for consistency.
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4.3. Effective weak Hamiltonian

2. γ5 is special to d = 4. The rule {γµ, γ5} = 0 leads to inconsistencies in d dimen-
sions. A prescription to eliminate γ5 is the ’t Hooft/Veltman scheme [16], which can
be thought of as replacing γ5 = − i

4!εµναβγ
µγνγργσ, contracting two epsilon tensors in

terms of metric tensors, and only dealing with a potentially remaining epsilon tensor
after renormalization. Alternatively, one can use the so-called NDR scheme (naive di-
mensional regularization), i.e., use 0 = {γµ, γ5} and hope that no inconsistency arise,
or the DRED scheme (dimensional reduction), i.e., treat γµ and the gauge fields as four
dimensional.

Let us now discuss the results. The bare Green’s function in the SM and in the EFT are
(d = 4− 2ε):

Γfull =
GFV

∗
csVud√
2

{(
1 + 2CF

αs
4π

(1

ε
+ log

µ2

−p2

))
〈O1〉tree +

3

Nc

αs
4π

log
M2
W

−p2
〈O1〉tree

− 3
αs
4π

log
M2
W

−p2
〈O2〉tree

}
+O

(
p2

M2
W

)
, (4.87)

Γeff =
GFV

∗
csVud√
2

{
Cbare

1

[(
1 + 2CF

αs
4π

(1

ε
+ log

µ2

−p2

))
〈O1〉tree

+
3

Nc

αs
4π

(1

ε
+ log

µ2

−p2

)
〈O1〉tree − 3

αs
4π

(1

ε
+ log

µ2

−p2

)
〈O2〉tree

]

+ Cbare
2

[(
1 + 2CF

αs
4π

(1

ε
+ log

µ2

−p2

))
〈O2〉tree +

3

Nc

αs
4π

(1

ε
+ log

µ2

−p2

)
〈O2〉tree

− 3
αs
4π

(1

ε
+ log

µ2

−p2

)
〈O1〉tree

]}
+O

(
p2

M2
W

)
. (4.88)

In each case, the first term corresponds to diagram (a), the remainder to (b)+(c) (and their

mirrored counterparts). The color factors are Nc = 3 and CF = N2
c−1

2Nc
= 4

3 , αs = g2
s

4π . The

Wilson coefficients have an expansion Ci = C
(0)
i + αs

4πC
(1)
i + . . . , as reflected by the αs correc-

tions in Eq. (4.87). The bare amputated Green’s functions have divergences, corresponding
to the 1/ε poles. In the full theory, these are removed by the wave-function renormalization

ψ(0) = Z
1/2
q ψ, with the one-loop wave function renormalization Zq = 1 − αs

4πεCF in MS and
for Feynman gauge. In the effective theory, there are additional divergences from (b) and (c),
which are not removed by wave-function renormalization of the Wilson coefficients in Leff.
Omitting the overall factor −GF√

2
V ∗csVud, one has

Leff = Cbare
i Oi(q

(0)) = Z2
qCiZijOj(q). (4.89)

The additional renormalization constants form a matrix Zij , and expanding Zij = δij +
αs
4πεZ

(1)
ij , one finds that

Z = 1+
αs
4πε

(
−3/Nc 3

3 −3/Nc

)
(4.90)

removes the remaining divergence in Γeff.
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4. The Standard Model at low energies

From the condition Γfull − Γeff = 0, one can then finally read off C1 and C2:

C1(µ) =1 +
3

Nc

αs
4π

log
M2
W

µ2
, (4.91)

C2(µ) =0− 3

Nc

αs
4π

log
M2
W

µ2
. (4.92)

The crucial point here is that C1 and C2 only depend on MW and µ, but not on the low-energy
scale p2. This has to be the case, as the low-energy physics must drop out in the matching.
The last step in the construction of Leff is to solve the RG equations for C1 and C2 to avoid
having large logarithms when evaluating C1(µ) at low values of µ. The RG equations follow
from the fact that physical quantities are µ independent. Equivalently, we can use the fact
that bare quantities are µ independent:

µ
d

dµ
Cbare
j (ε, αbare) = 0 = µ

d

dµ
Ci(µ)Zij(αs(µ), ε) (4.93)

=

(
µ
d

dµ
Ci(µ)

)
Zij + Ci(µ)

(
µ
d

dµ
Zij

)
, (4.94)

so that

µ
d

dµ
Cj(µ)− Ci(µ)γij(α) = 0, (4.95)

with γij = −(µ d
dµZik)Z

−1
kj , or, in vector notation,(

µ
d

dµ
− γ̂T

)
~C(µ) = 0. (4.96)

In the MS scheme, the Z-matrix is a sum of pole terms Ẑ = 1+
∑∞

k=1
1
εk
Ẑk(αs) and there is

a simple relation (“magic relation”)

γ̂ = 2αs
∂Ẑ1

∂αs
=
αs
4π

(
−6/Nc 6

6 −6/Nc

)
. (4.97)

To solve the RG equation, it is simplest to use a basis in which γ̂ is diagonal, in our case the
corresponding combinations are C± = C1 ± C2, with

µ
d

dµ
C±(µ) =

αs
4π

6
(
± 1− 1

Nc

)
C±(µ) (4.98)

≡− αs
4π
γ±C±(µ). (4.99)

Converting the derivatives using the QCD β function

µ
dαs
dµ

= −2αs

[
αs
4π
β0 +

(αs
4π

)2
β1 + · · ·

]
, (4.100)

we can solve these RG equations by a separation of variables

dC±
C±

=− d logµ
αs
4π
γ± = − dαs

β(αs)

αs
4π
γ± =

dαs
αs

γ±
2β0

+ · · · , (4.101)
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4.3. Effective weak Hamiltonian

with the result

log
C±(µ)

C±(MW )
=

γ±
2β0

log
αs(µ)

αs(MW )
(4.102)

or

C±(µ) = C±(MW )

(
αs(µ)

αs(MW )

) γ±
2β0

. (4.103)

Using C±(MW ) = 1 +O(αs) and rotating back to the original basis we find

C1(µ) =
1

2

[(
αs(µ)

αs(MW )

) γ+
2β0

+

(
αs(µ)

αs(MW )

) γ−
2β0

]
, (4.104)

C2(µ) =
1

2

[(
αs(µ)

αs(MW )

) γ+
2β0

−
(

αs(µ)

αs(MW )

) γ−
2β0

]
, (4.105)

where

β0 =
11

3
Nc −

2

3
nf , γ± = −6

(
± 1− 1

Nc

)
= ∓6 + 2. (4.106)

Numerically, one finds for µ = mb

C1(µ) = 1.10, C2(µ) = −0.24, (4.107)

so that at the low scale indeed a non-vanishing result for C2 has been induced, while the
value of C1 changes by a similar amount. This completes our discussion the QCD effects in
Leff relevant for b→ uc̄s, which mediates B̄ → D−s π

+.

The structure of Leff becomes more complicated for flavor-changing-neutral current (FCNC)
processes such as

b→ sγ, b→ sg, b→ sq̄q, b→ sl+l−. (4.108)

For such decays so-called penguin diagrams contribute, e.g.,
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4. The Standard Model at low energies

Such processes are interesting because they can violate CP symmetry and are sensitive to
new physics because they only arise at loop-level in the SM. The effective Lagrangian for such
processes contains ∼ 12 operators, which all mix under renormalization, i.e.,[

µ
d

dµ
− γ̂T

]
~C = 0. (4.109)

Although there is a lot of interesting phenomenology associated with such decays, we will not
discuss them further, but let us note that the corresponding anomalous-dimension matrix has
been calculated at O(α3

s), which involved the computation of hundreds of thousands of three-
and four-loop diagrams.

4.4. Chiral perturbation theory

Let us finally turn to the strong interaction at low energies. Instead of quarks and gluons,
the observed particles are hadrons, i.e., mesons such as π, K, η, η′, ρ, . . . and baryons p,
n, ∆, Σ, . . . The effective Lagrangian is then a function of hadron fields. As in all our
previous applications, one starts by writing down the most general Leff compatible with the
symmetries of the underlying theory, i.e., QCD. In contrast to previous examples, however,
we will be unable to perform matching computations due to our limited ability to perform
QCD computations at low energy (using lattice-QCD simulations, it is becoming possible to
some extent). At first sight, it looks like an effective theory of hadrons and it will be not
very predictive since the Wilson coefficients are not known. However, it turns out that chiral
symmetry severely constrains the interactions of the light hadrons, and the EFT approach is
very useful to derive the consequences of this approximate symmetry.

4.4.1. Chiral Symmetry

Since we will work at very low energies, we can integrate out the heavy-quark flavors and use

Leff
QCD = −1

4
GaµνG

µν
a +

∑
f=u,d,s

ψ̄f (i /D −mf )ψf +O
( 1

m2
c,b,t

)
. (4.110)

The theory simplifies further in the chiral limit mq → 0. Since only the mass term distin-
guishes different flavors, a new flavor symmetry arises. In fact, the symmetry group is even
larger: splitting ψL,R = PL,Rψ, with PL = 1

2(1− γ5), PR = 1
2(1 + γ5), one finds

Leff
QCD =

∑
f

[
q̄L,f i /DqL,f + q̄R,f i /DqR,f −mf (q̄L,fqR,f + q̄R,fqL,f )

]
− 1

4
GaµνG

µν
a . (4.111)

Therefore, in the absence of a mass term, L is invariant under the chiral transformations

qL =

uLdL
sL

→ VL

uLdL
sL

 = VLqL, (4.112)

qR → VRqR, (4.113)
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4.4. Chiral perturbation theory

where VL and VR are unitary 3 × 3 matrices.5 Instead of mu, md, ms → 0, it is also useful
to consider the two-flavor chiral limit mu,d → 0 and ms fixed. In this case, the symmetry
transformations are (

uL,R
dL,R

)
→ VL,R

(
uL,R
dL,R

)
, (4.114)

and the transformations can be parameterized as

VL,R = exp

[
iαL,R + i

σa

2
αaL,R

]
, (4.115)

where the Pauli matrices σa

2 , a = 1, 2, 3, are the generators of SU(2). For the three-flavor

case, the generators are the Gell-Mann matrices λa

2 , a = 1, . . . , 8. We can then consider
infinitesimal transformations and Noether’s theorem gives a classically conserved current for
each transformation Jµ ∝ δL

δ(∂µψ)δψ:

Lµ = q̄LγµqL, Laµ = q̄Lγ
µλ

a

2
qL, (4.116)

Rµ = q̄RγµqR, Raµ = q̄Rγ
µλ

a

2
qR. (4.117)

Instead of left- and right-handed currents, it is convenient to use vector and axial-vector
currents:

V µ = Lµ +Rµ = q̄γµq, (4.118)

Aµ = Rµ − Lµ = q̄γµγ5q. (4.119)

It turns out that Aµ is anomalous, i.e., ∂µA
µ 6= 0 due to quantum effects. More precisely,

∂µA
µ =

Ncg
2
s

32π2
εµνρσG

µν
a Gρσa . (4.120)

The remaining SU(3)L × SU(3)R × U(1)V transformations are symmetries of the quantum
theory. With each current, we can associate a conserved charge

QaV =

∫
d3xq̄γ0λ

a

2
q, (4.121)

QaA =

∫
d3xq̄γ0γ5λ

a

2
q. (4.122)

The 2 × 8 + 1 charges QV , QaV , QaA commute with the Hamiltonian H0 of massless QCD
[QaV ,HQCD] = [QaA,HQCD] = 0. The question is then whether the spectrum of the theory is
symmetric, or whether the symmetry is spontaneously broken. Vafa and Witten have shown
that the vector-like symmetries are unbroken QaV |0〉 = 0 [17]. For the axial-vector symmetry,
the situation is more complicated. Let us discuss the two possibilities:

1. Unbroken symmetry QaA |0〉 = 0: in this case, the spectrum contains degenerate multi-
plets of G = SU(3)V × SU(3)A.

5Note that VL and VR are global rotations in flavor space, while the gauge transformations act in color space.
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4. The Standard Model at low energies

2. Spontaneously broken symmetry QaA |0〉 6= 0: in this case only multiplets of SU(3)V ⊂ G
appear in the spectrum, and for each broken generator a Goldstone boson arises.

The second case is realized in nature. In particular, a naive derivation of Goldstone’s theorem
would look as follows. Since HQaA |0〉 = QaAH |0〉 = 0 and QaA |0〉 6= 0, for each generator there
has to be a state with zero energy, so for each broken generator one obtains a massless,
parity-odd, spin-0 state. Unfortunately, this simple argument has a flaw:

〈0|QaAQbA |0〉 =

∫
d3x

∫
d3y 〈0|Aa0(x)Ab0(y) |0〉 (4.123)

=

∫
d3x

∫
d3yF ab(x− y) =∞, (4.124)

so the “states” QaA |0〉 have infinite norm. A rigorous proof is obtained by analyzing the
correlation function

〈0| [QaA(t), P a(t,y)] |0〉 . (4.125)

Inserting a basis of states and using current conservation, one can show that if this matrix
element is non-vanishing, then the theory contains a massless particle with the same quantum
numbers as P a = q̄ λ

a

2 γ5q.
The above matrix element can be simplified using the equal time anti-commutation relations

{ψα,r(t,x), ψ†β,s(t,y)} = δαβδrsδ
(3)(x− y), (4.126)

{ψ,ψ} = 0, {ψ†, ψ†} = 0. (4.127)

The commutator has the form

[ab, cd] = a{b, c}d− ac{b, d}+ {a, c}db− c{a, d}b, (4.128)

so we get

[Aa0(x, 0), P a(y, 0)] = q†(y)γ5λ
a

2
δ(3)(x− y)γ0γ5λ

a

2
q(y)− q†(y)γ0γ5λ

a

2
δ(3)(x− y)γ5λ

a

2
q(y)

= −2q̄
(λa)2

4
qδ(3)(x− y). (4.129)

Because of SU(3)V invariance of |0〉, one can average over the components,6 leading to

〈0| [QaA, P a(x)] |0〉 = −1

8

∑
b

1

2
〈0| q̄(λb)2q |0〉 (4.130)

= −1

3
〈0| q̄q |0〉 (4.131)

= −1

3
〈0| ūu+ d̄d+ s̄s |0〉 (4.132)

= −〈0| ūu |0〉 , (4.133)

where we used the fundamental Casimir operator
∑

a(λ
a)2 = 4CF1 = 16

3 1. The quark
condensate q̄q = q̄LqR + q̄RqL breaks chiral symmetry.

6Formally, this can be derived by considering the analogous commutator [QaV , S
b].
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4.4. Chiral perturbation theory

A non-vanishing quark condensate implies that chiral symmetry is spontaneously broken
and that there are 8 pseudoscalar Goldstone bosons. Since the quark masses are non-zero,
chiral symmetry is not an exact symmetry of QCD. On the other hand, the u-, d-, and s-quark
masses are small, so one can treat the mass term of QCD as a perturbation. Looking at the
spectrum, one finds that three mesons π±, π0 are quite light, Mπ ≈ 140 MeV, and nearly
degenerate. Since they also are parity-odd and have spin zero, it is plausible that they are
the SU(2) triplet of “Goldstone” bosons associated with the spontaneous breaking of chiral

symmetry in the

(
u
d

)
sector:

SU(2)L × SU(2)R → SU(2)V . (4.134)

Since the small mass-term breaks the symmetry explicitly, they acquire a small mass. For this
reason, they are called pseudo Goldstone bosons. The lowest-lying eight mesons π+, π−, π0,
K+, K−, K0, K̄0, and η have JP = 0−, and so match the pattern of symmetry breaking for
SU(3)L×SU(3)R → SU(3)V . If chiral symmetry were unbroken, one would expect multiplets
of the full symmetry group: for each parity-odd meson, there should be a (nearly) degenerate
parity-even partner. From these considerations, and from the fact that chiral perturbation
theory is very successful in describing the low-energy phenomenology of QCD, one concludes
that chiral symmetry is indeed spontaneously broken.

4.4.2. Transformation properties of Goldstone bosons

In order to construct the most general effective Lagrangian, we need to know how the
Goldstone-boson fields π transform under chiral symmetry. Usually fields transform linearly,
as a representation of a group ϕ → M(g)ϕ. For Goldstone bosons, however, the symmetry
is realized non-linearly, as we will now see. More details on the CCWZ construction that
underlies the following discussion is provided in Appendix C.

Let us consider first the general case of a group G that breaks spontaneously to a subgroup
H. There are then n = nG − nH Goldstone bosons, which we collect into an n-dimensional
vector π(x). A realization of the group is a mapping

π → π′ = ϕ(g,π) (4.135)

for any g ∈ G. This mapping must obey the composition law7

ϕ(g1,ϕ(g2,π)) = ϕ(g1g2,π). (4.136)

Remarkably, this property determines ϕ uniquely. To see this, consider the image of the
origin ϕ(g,π = 0). The elements h ∈ H map the origin onto itself ϕ(h, 0) = 0, since H is
linearly realized. Moreover

ϕ(gh, 0) = ϕ(g, 0) ∀h ∈ H, (4.137)

so that ϕ is defined on the coset space G/H. It maps an element of G/H into the space of
pion fields. Furthermore, it is also invertible since ϕ(g1, 0) = ϕ(g2, 0) implies g1H = g2H.8

7In general ϕ is not a representation, since it is not linear ϕ(g, λπ) 6= λϕ(g,π).
8The proof proceeds as in Appendix C:

ϕ(e, 0) = 0 = ϕ(g−1
1 g1, 0) = ϕ(g−1

1 ,ϕ(g1, 0)) = ϕ(g−1
1 ,ϕ(g2, 0)) = ϕ(g−1

1 g2, 0) = 0,

and therefore g−1
1 g2 ∈ H, i.e., g1H = g2H.
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4. The Standard Model at low energies

Accordingly, the function ϕ(g, 0) provides a one-to-one mapping between the coset space G/H
and the values of the π field. The transformation of the field follows from the action of g ∈ G
on the coset space. The only freedom left is the choice of coordinates on G/H.

Let us now consider G = SU(2)L × SU(2)R = {(VL, VR)|VL ∈ SU(2), VR ∈ SU(2)} and
H = {(V, V )|V ∈ SU(2)}. The coset space associated with an element g is the set g̃H =
{(ṼLV, ṼRV )|V ∈ SU(2)}. To parameterize G/H, we select one element of each set g̃H. A

possible choice is U = ṼRṼ
†
L , since

(ṼLV, ṼRV ) = (1, ṼRṼ
†
L)(ṼLV, ṼLV︸ ︷︷ ︸

∈H

). (4.138)

The transformation law of U under G is

U → VRUV
†
L (4.139)

for g = (VL, VR). In a final step we need to parameterize U(x) ∈ SU(2). One can use the
standard parameterization

U(x) = exp
[
i
σaπa

F

]
= exp

[
i

F

(
π0

√
2π+

√
2π− −π0

)]
, (4.140)

where we have rewritten the pion field in the linear combinations with definite electric charge.
The factor F was introduced to obtain a dimensionless exponent, but it will correspond to
the pion decay constant. One could have chosen a different parameterization, e.g., for the
SU(2) case often the co-called σ parameterization

U(x) =
√

1− π2/F 2 +
i

F
σ · π (4.141)

proves beneficial. The π-fields of the two different parameterizations are related by a field
redefinition, under which the physics remains unchanged. For SU(3), the standard parame-
terization is

U(x) = exp

[
i

F
λaπa

]
= exp

 i
F

π
0 + 1√

3
η

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η
√

2K0

√
2K−

√
2K̄0 − 2√

3
η


 . (4.142)

To understand why the field are parameterized in this way, one needs to consider the quark-
mass term and the coupling to photons, to which we will turn in the next subsection.

4.4.3. Effective Lagrangian

Now that we know the transformation properties of the Goldstone bosons, it is straightforward
to write down the effective Lagrangian in the chiral limit mq = 0. After this we will have to
implement the symmetry-breaking terms involving the quark masses.

Under a chiral transformation U → VRUV
†
L , so we need to find an effective Lagrangian

Leff(U) that is invariant under this transformation. Since U(x) is dimensionless, the terms
with higher orders of U(x) are not suppressed, so instead we order terms by derivatives

Leff = f0(U) + f1(U)�U + f2(U)∂µU∂
µU + · · · , (4.143)

where for now we have ignored the flavor indices, which will have to be contracted later.
We observe:
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4.4. Chiral perturbation theory

1. Chiral symmetry implies f0(U) = f0(VRUV
†
L). Choosing VR = 1, VL = U , this leads to

f0(U) = f0(1) = const. Therefore, terms of order O(1) in the derivative expansion only
give an irrelevant constant that can be dropped.

2. The f1-term can be absorbed into f2 using integration by parts∫
d4xf1(U)�U = −

∫
d4xf ′1(U)∂µU∂

µU, (4.144)

so we can write

Leff = f(U)∂µU∂
µU = f̃(U)∆µ∆µ with ∆µ = (∂µU)U †. (4.145)

The quantity ∆µ transforms as ∆µ → VR∆µV
†
R and is invariant under VL transformations.

The last question is how the indices of the matrices ∆µ are contracted. The only possibility
to ensure invariance under VR is

Leff = C · Tr[∆µ∆µ] = C · Tr[(∂µU)U †(∂µU)U †] (4.146)

= −C · Tr[∂µUU
†U∂µU †] = −C · Tr[∂µU∂

µU †] (4.147)

≡ F 2

4
Tr[∂µU∂

µU †], (4.148)

where the prefactor has been chosen to get canonically normalized kinetic terms for the pion
fields. To see this, we now expand

U(x) = exp
[ i
F
π · σ

]
= 1+

i

F
π · σ − 1

2F 2
π21+O

(
π3
)
, (4.149)

leading to

Leff =
F 2

4

(
− 1

F 2
∂µπ

a∂µπb
)

2δab +O(π3) = −1

2
∂µπ∂

µπ +O(π3). (4.150)

The effective Lagrangian has several remarkable properties:

1. one parameter F determines all π-interactions,

2. symmetry requires interactions with arbitrary many pions,

3. derivative couplings: the interactions vanish if the momenta go to zero.

So far, our effective Lagrangian is only valid in the limit mq = 0 and we should now also
implement the quark-mass terms that break the symmetry:

LM = −q̄RMqL − q̄LM †qR, (4.151)

with

M =

mu 0 0
0 md 0
0 0 ms

 . (4.152)

Note that LM would be invariant if M transformed as M → VRMV †L . This property can
actually be used to construct Leff(U,M): one treats M as an external source that transforms
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4. The Standard Model at low energies

as M → VRMVL (a so-called “spurion” field). Leff must then be invariant as well. Expanding
in M , the lowest invariant term is

Lsymmetry breaking =
F 2B0

2
Tr[MU † +M †U ]. (4.153)

This term gives a mass to the pions. For SU(2) one finds

Lsymmetry breaking =
F 2B0

2
Tr[M ]

(
− 1

F 2
π2
)

= −B0

2
(mu +md)π

2 ≡ −M
2
π

2
π2, (4.154)

from which we conclude that the masses of the pions are equal and proportional to the sum
mu +md.

To relate the quantity B0 to a QCD matrix element, we actually need to treat M as an
external source M ≡ [M(x)]ij and then take a functional derivative of the full and effective
theory partition function

1

i

δ

δMij(x)
ZQCD = −〈0| q̄L,i(x)qR,j(x) + q̄R,j(x)qL,i(x) |0〉 , (4.155)

1

i

δ

δMij(x)
Zeff =

F 2B0

2
〈0| (U †)ji(x) + Uij(x) |0〉 . (4.156)

The classical action is minimized by π = 0, U = 1. Up to pion-loop corrections, we thus have

F 2B0δij = −〈0| q̄L,iqR,j + q̄R,jqL,i |0〉 , (4.157)

F 2B0 = −〈0| ūu |0〉 = −〈0| d̄d |0〉 . (4.158)

This shows that B0 corresponds to the quark condensate in the limit mq → 0. Taken together
with the expansion of the pion mass, we find the relation

M2
π = (mu +md)︸ ︷︷ ︸

explicit breaking

(
−〈0| ūu |0〉

F 2

)
︸ ︷︷ ︸

spontaneous breaking

+O
(
m2
q

)
, (4.159)

known as the “Gell-Mann–Oakes–Renner relation” [18]. For SU(2), the three pions have the
same mass because the quadratic term in the expansion (4.149) is proportional to the unit
matrix, essentially because 1

2{σ
i, σj} = δij1. In the SU(3) case {λa, λb} is non-trivial and

one finds

M2
π = (mu +md)B0 +O

(
m2
q

)
, (4.160)

M2
K± = (mu +ms)B0 +O

(
m2
q

)
, (4.161)

M2
K0,K̄0 = (md +ms)B0 +O

(
m2
q

)
, (4.162)

M2
η =

1

3
(mu +md + 4ms)B0 +O

(
m2
q

)
. (4.163)

This explains why M2
K � M2

π , because ms � mu,md. In addition, one has the Gell-Mann–
Okubo mass formula [19,20]

M2
π − 4M2

K + 3M2
η = O

(
m2
q

)
. (4.164)
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4.4. Chiral perturbation theory

To understand how the mesons interact with photons, W -, and Z-bosons, it is useful to
introduce external sources with the appropriate quantum numbers both in the full and the
effective theory. For QCD, we add

LQCD = L0 + L1, (4.165)

L0 = −1

4
GaµνG

µν
a + q̄i /Dq, (4.166)

L1 = vaµV
µ
a + aaµA

µ
a − saSa − paPa, (4.167)

with sources

V µ
a = q̄γµ

λq
2
q, Aµa = q̄γµγ5

λq
2
q, Sa = q̄

λq
2
q, Pa = q̄iγ5

λq
2
q, (4.168)

and one can also include singlet currents via λ0 =
√

2
31. The external fields vaµ(x), aaµ(x),

sa(x), pa(x) can be used to probe different aspects of QCD, e.g., quark masses are included
in sa(x). To construct Leff in the presence of these sources, one can use the fact that LQCD

becomes invariant under local transformations

qL(x)→ VL(x)qL(x), qR(x)→ VR(x)qR(x), (4.169)

provided the external fields transform like gauge fields:

rµ = vµ + aµ → VR(vµ + aµ)V †R − i(∂µVR)V †R, (4.170)

lµ = vµ − aµ → VL(vµ − aµ)V †L − i(∂µVL)V †L , (4.171)

s+ ip→ VR(s+ ip)V †L , (4.172)

where vµ = vaµ
λa

2 , etc., and the task is then to construct a locally invariant effective La-
grangian. At leading order, it is sufficient to replace ∂µ by the covariant derivative:

iDµU = i∂µU + (vµ + aµ)U − U(vµ − aµ), (4.173)

where vµ, aµ count as O(p), so that

Leff =
F 2

4
Tr[DµUD

µU †] +
F 2B0

2
Tr[χU † + χ†U ] +O

(
p4
)
, (4.174)

with χ = s+ ip and the convention DµU
† ≡ (DµU)†. We are now in the position to interpret

the second free parameter F , by considering the axial-vector current, i.e.,

DµU =
i

F
σ · ∂µπ − 2iaµ ·

σ

2
+O

(
π2
)
. (4.175)

For the coupling of a single axial-vector current we thus find

F 2

4

4

F

(
− aµ · ∂µπ

)
= −Faµ · ∂µπ, (4.176)

and matching to Eq. (4.75) proves F = Fπ at leading order.
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4. The Standard Model at low energies

At O(p4) Leff has the form [2,3]

L(4) =
l1
4

(Tr[DµUD
µU †])2 +

l2
4

Tr[DµUDνU
†]× Tr[DµUDνU †]

+
l3
4

(Tr[χU † + Uχ†])2 +
l4
4

Tr[DµχD
µU † +DµUD

µχ†] + · · · (4.177)

For SU(3) L(4) has 12 coupling constants, while for SU(2) 10 such low-energy constants arise.

To perform calculations beyond leading order, one needs one-loop graphs from L(2), which
also count as O(p4), e.g.,

L(2)
∝
∫
d4k

1

k2 −M2
π

k2 ∝M4
π (4.178)

contributes to the O(m2
q) corrections in the mass formulae (4.160). In particular, loop

contributions are suppressed by a loop factor 1/(16π2) and, for dimensional reasons, by 1/F 2
π ,

leading to an expansion in 1/(4πFπ)2.9 From the loop suppression one thus expects an
expansion in {

p2

Λ2
χ

,
M2
π

Λ2
χ

,
M2
K

Λ2
χ

}
, (4.179)

where Mπ and MK apply to the SU(2) and SU(3) expansions, respectively. The RG estimate
for the scale of chiral symmetry breaking can be compared to the first resonance in the
spectrum, which gives rise to

0.775 GeV ≈Mρ . Λχ . 4πFπ ≈ 1.2 GeV, (4.180)

and thus a scale around 1 GeV. In practice, the expansion proceeds not just in terms of powers
of Eq. (4.179), but the loop corrections can generate logarithmic dependences on momenta
and masses.

Finally, we mention a complication that appears in the construction of chiral Lagrangians,
which is related to the Wess–Zumino–Witten (WZW) anomaly [22, 23]. The point is that
LQCD and Leff are invariant under local chiral transformations, but the partition function

Z[ν, a, s, p] =

∫
DqDq̄DAµ ei

∫
d4x(L0+L1) = eiSeff[ν,a,s,p] (4.181)

is not invariant if the external sources are non-zero, because of anomalies in the fermion
determinant. Since the effective theory does not involve fermion fields, invariance of Leff

leads to invariance of the partition function. To correct for this mismatch, one needs to add
Leff a term that reproduces the charge of the QCD partition function. This term is called the
WZW term LWZW. The full effective theory Lagrangian is then

Leff = Linv + LWZW. (4.182)

9This argument can be made more rigorous in terms of the renormalization group [21].
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4.5. The Standard Model as an EFT

The WZW term is O(p4) and does not involve any low-energy constants. In contrast to Linv,
the terms in LWZW contain odd numbers of Goldstone-boson fields. In particular, it contains
a term describing an interaction of two vector fields with a π0, which leads to

Γπ0→γγ =
α2N2

cM
3
π0

64π3F 2
π

(
Q2
u −Q2

d

)2
= 7.749(15) eV. (4.183)

The good agreement with the experimental value 7.802(117) eV [24] is sometimes sold as
evidence for Nc = 3. However, Bär and Wiese pointed out that Q2

u −Q2
d = 1

Nc
for Nc colors

(to ensure anomaly cancellation in the SM), so that the rate does not depend on Nc [25].
The π0 decay is much faster than the one of the charged pion because it is mediated by
strong/electromagnetic instead of electroweak interactions.

4.5. The Standard Model as an EFT

We have now covered (almost10) all sectors of the SM and discussed the corresponding EFTs.
In particular, we have worked our way up in energy and have integrated out heavy leptons,
quarks, and gauge bosons. In each case we wrote down the relevant operators up to d = 6.
In all cases, the main motivation for the EFT approach was either to simplify calculations in
the SM or, as for strong interactions at low energies, to actually make analytic calculations
possible.

Going one step further, one could also consider the entire SM as an EFT, i.e., assume that
all potential new particle arise above the scale of electroweak symmetry breaking and can thus
be described by effective operators that obey the SM gauge group SU(3)c×SU(2)L×U(1)Y .
While there is only a single operator at d = 5 (related to neutrino Majorana masses), there are
many possibilities at d = 6, and finding the minimal set is non-trivial. A complete set was first
written down by Buchmüller and Wyler [26]. However, the minimal set was only constructed
in 2010 [27], comprising 15 + 19 + 25 = 59 different operators (bosonic, two-fermion, and
four-fermion, respectively). If baryon number is violated, four additional operators appear.

10Heavy-quark EFT requires a non-relativistic formalism, see Chapter 5.
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5. Non-relativistic effective theories

We have considered several EFTs that are obtained by integrating out heavy particles. How-
ever, in many cases heavy particles are present even at very low energy. The reason are
conservation laws for particle numbers such as lepton number conservation (L = Le− − Le+)
and baryon (or quark) number conservation. If we neglect the weak interaction, then each
lepton and quark flavor is separately conserved.

The proper framework to describe heavy particles at low momentum are non-relativistic
EFTs. Examples of systems that can be studied with such techniques are atoms, mesons with
heavy (i.e., bottom or charm) quarks, and protons interacting with slow pions, etc.

A heavy B-meson has similarities to a hydrogen atom, but an important difference is
that the light degrees of freedom inside the B-meson are still highly relativistic and strongly
interacting. Nevertheless some properties of hydrogen carry over: the energy of the B-meson
is to good accuracy independent of the b-quark spin. Also, the energy spectrum of B-mesons
is independent of the heavy-quark mass to good approximation:

Heavy quark effective theory (HQET) will allow us to derive such relations in the limit
mQ → ∞ and to systematically analyze the 1

mQ
corrections. For systems such as hydrogen
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5.1. Heavy-quark effective theory

or a Bc meson also lighter fermions (e− or c̄ respectively) can be treated non-relativistically.
The EFT for this case is non-relativistic QED/QCD (NRQED/NRQCD). HQET and NRQCD
have the same Lagrangian but different power counting.

5.1. Heavy-quark effective theory

Interactions of the heavy quark Q with the light constituents of a heavy-to-light meson will
change its momentum by amounts of order ΛQCD ∼ 1 GeV, but its velocity is barely changed

δvµQ =
∆pµQ
mQ
� 1. To analyze such systems, we introduce a reference vector vµ, v2 = 1, in the

direction of the heavy quark and split

pµQ = mQv
µ + rµ, (5.1)

so that the residual momentum rµ is O(ΛQCD). A popular choice for vµ is the meson velocity

vµ =
PµM
mM

. The EFT then corresponds to an expansion in the residual momentum rµ over the
heavy quark mass mQ.

On the level of the quark field the decomposition of the momentum is achieved by splitting
off the large phase e−imQv·x from the field:

ψQ(x) = e−imQv·x{hv(x) +Hv(x)}, (5.2)

where

hv(x) = eimQv·xP+ψQ(x), P+ =
1+ /v

2
, (5.3)

Hv(x) = eimQv·xP−ψQ(x), P− =
1− /v

2
. (5.4)

The projection operators P+ and P− split the field into the large (“upper”) components hv(x)
and the small (“lower”) components Hv(x). They obey

/vhv(x) = hv(x), /vHv(x) = −Hv(x). (5.5)

Let us insert this decomposition into the Dirac Lagrangian:

LQ = ψ̄Q(i /D −mQ)ψQ (5.6)

= h̄vi /Dhv + H̄v(i /D − 2mQ)Hv + H̄vi /Dhv + h̄vi /DHv, (5.7)

which further simplifies to

LQ = h̄viv ·Dhv + H̄v(−iv ·D − 2mQ)Hv + H̄vi /D⊥hv + h̄vi /D⊥Hv, (5.8)

when expressed in terms of the component Dµ
⊥ = Dµ − v ·Dvµ perpendicular to vµ. Here we

used that

h̄vγ
µhv = h̄vγ

µ/vhv = −h̄vγµhv + 2vµh̄vhv = vµh̄vhv, (5.9)

H̄vγ
µHv = −vµH̄vHv, (5.10)

H̄v/vhv = h̄v/vHv = 0. (5.11)
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5. Non-relativistic effective theories

The EOM for Hv is
(−iv ·D − 2mQ)Hv + i /D⊥hv = 0, (5.12)

which can be formally inverted as

Hv =
1

2mQ

∞∑
n=0

(
− iv ·D

2mQ

)n
i /D⊥hv. (5.13)

This shows that Hv is suppressed with respect to hv by a factor r⊥
2mQ

and can be integrated

out. Since the action is quadratic in the fields, this step can even be done exactly. At the
classical level, the result is obtained by inserting the solution of the EOM for Hv back into
LQ. At leading order one obtains

LQ = h̄viv ·Dhv +
1

2mQ
h̄vi /D⊥i /D⊥hv︸ ︷︷ ︸
power corrections

+O
( 1

m2
Q

)
. (5.14)

The power corrections can be further rewritten as

i /D⊥i /D⊥ = iD⊥µ iD
⊥
ν (

1

2
{γµ, γν}+

1

2
[γµ, γν ]) (5.15)

= iD⊥µ iD
⊥
ν (gµν − iσµν) (5.16)

= (iD⊥)2 +
i

2
[D⊥µ , D

⊥
ν ]σµν (5.17)

= (iD⊥)2 +
gs
2
σµνGµν , (5.18)

where we used the analog of Eq. (4.3) for the QCD field strength tensor.1 The resulting
Lagrangian

LQ = h̄viv ·Dhv +
1

2mQ
h̄v(iD⊥)2hv +

gs
4mQ

h̄vσµνG
µνhv (5.19)

simplifies further when going to the rest frame vµ = (1,0)

LQ = h̄viDthv +
1

2mQ
h̄vD

2hv −
gs

2mQ
h̄vσ ·Bchv, (5.20)

where Bc is the chromomagnetic field and the notation has been changed to two-component
spinors. The first term is independent of the quark spin (“heavy-quark spin symmetry”) and
the quark mass (“heavy-quark flavor symmetry”). The second term breaks heavy-quark flavor
symmetry but maintains the spin symmetry, while the third term violates both.

5.2. Connection to quantum mechanics

Let us go into the rest frame of the heavy quark vµ = (1,0). The projection operator is then

P+ =
1

2
(1+ γ0) =

(
1

0

)
, (5.21)

1The corrections from D⊥µ vs. Dµ are symmetric in µ↔ ν and thus vanish upon contraction with σµν .
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5.2. Connection to quantum mechanics

i.e., P+ projects out the upper two components of the Dirac field. When considering QED
instead of QCD,

ψQ → ψe, iDµ → i∂µ − eAµ,

the magnetic operator becomes

− e

4me
h̄vσ

µνFµνhv = − ie

8me
h̄v (σiσj − σjσi)︸ ︷︷ ︸

2iεijkσk

(∂iAj − ∂jAi)︸ ︷︷ ︸
2∂iAj

hv (5.22)

=
e

2me
h̄vσ · (∇×A)hv =

e

2me
h̄vσ ·Bhv. (5.23)

The effective Lagrangian for a slow electron (described by a field X) is therefore

L = X̄iDtX − X̄
(iD)2

2me
X +

e

2me
X̄σ ·BX. (5.24)

The EOM associated with this Lagrangian is the Schrödinger equation for an e− interacting
with a photon field. The free propagator associated with L

4x =
1

E − p2

2m + iε
(5.25)

has only a single pole, in contrast to a relativistic propagator:

1

p2 −m2 + iε
=

1

2ω

 1

p0 − ω + iε︸ ︷︷ ︸
particle

− 1

p0 + ω − iε︸ ︷︷ ︸
antiparticle

 (5.26)

=
1

2m

1

E − p2

2m + iε
+ . . . , (5.27)

where ω = m+ p2

2m + . . . , p0 = m+E. This has important consequences: since the theory no
longer contains anti-particles, closed fermion loops vanish:

p+ k

← k

p ∝
∫
ddk

1

(E + k0)− (p+k)2

2m + iε

1

k0 − k2

2m + iε
= 0, (5.28)

because we can choose the k0 integration contour without encountering a pole (since Im k0 < 0
for all poles). Therefore all fermion loops vanish in HQET. The effect of virtual anti-particles
can be absorbed into the Wilson coefficients of the operators in Leff, e.g.,
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5. Non-relativistic effective theories

is represented by the Euler–Heisenberg terms in Leff.

Despite this observation, our theory is not simply quantum mechanics, since the electro-
magnetic field is a fully relativistic quantum field. To obtain QM, we need to treat also the
electromagnetic field as a classical one. Let us therefore assume that Aµ = φ(0,x) is a fixed
classical potential (e.g., the Coulomb field of a proton).

Now the field operator fulfills

i∂tX̂ = [X̂, Ĥ] =

(
−∇2

2m
+ eφ(x)

)
X̂. (5.29)

The solutions of the time-independent Schrödinger equation(
−∇2

2m
+ eφ(x)

)
ϕn(x) = Enϕn(x) (5.30)

form a complete set of functions, which can be used to expand

X̂(t,x) =
∑
i

âie
−iEitϕi(x). (5.31)

The operator âi annihilates the state with associated wave function ϕi(x). Now the system is

indeed quantum mechanical: the one-particle states are |i〉 = a†j |0〉 and they have associated
wave functions

〈0| X̂(t,x) |i〉 = e−iEitϕi(x) (5.32)

that fulfill the Schrödinger equation.

To summarize

1. The EFT for a non-relativistic particle has a Lagrangian that has the Schrödinger
equation as EOM.

2. There are no anti-particles in the EFT, their effect can be absorbed into the Wilson
coefficients, since they are highly virtual.

3. Treating the photon as a classical background field we recover quantum mechanics.

5.3. Non-relativistic QED and QCD

Let us finally consider the effective theory relevant for the description of bound states of
two heavy particles, e.g., positronium (e+e−), muonium (µ+µ−), bottomonium (b̄b), and
charmonium (c̄c). The effective theories are called NRQED and NRQCD, respectively, and
are closely related to HQET, except for the fact that we now deal with both a particle,
described by a two-component spinor ψ, and an anti-particle, which we denote by χ. The
effective Lagrangian has the form

LNR = Lψ + Lχ + Lmixed + Llight. (5.33)

Lmixed contains operators involving both χ and ψ fields. Llight is the QCD Lagrangian for the
light quarks plus higher-dimensional operators. The Lagrangians for the ψ field is nothing
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5.3. Non-relativistic QED and QCD

but the HQET Lagrangian evaluated for vµ = (1,0), since it is natural to work in the rest
frame of the bound state. Therefore,

Lψ = ψ†
(
iDt +

D2

2mψ

)
ψ +

1

8m3
ψ

ψ†D4ψ +
gC1

2mψ
ψ†σ ·Bψ +

gC2

8m2
ψ

ψ†
(
D ·E−E ·D

)
ψ

+
gC3

8m2
ψ

ψ†
(
iD ×E−E× iD) · σψ, (5.34)

where g is the gauge coupling, g = gs or g = −e. Moreover, we have included 1/m2
Q- and

1/m3
Q-suppressed terms because the power counting is different than in HQET. Next, Lχ is

obtained as the charge conjugate of Lψ,

Lχ = Lψ
∣∣
ψ→χ,Aµ→−Aµ , (5.35)

and the lowest-dimensional operators in Lmixed are four-quark operators, e.g.,

Lmixed =
C4

m2
ψ†ψ χ†χ+

C5

m2
ψ†σσ2χχ

†σ2σψ. (5.36)

The first operator arises when high-energy contributions to the scattering of χ and ψ are
integrated out, e.g.,

Q →

χ

ψ

+

ψ†ψ

χ†χ

The second operator arises in annihilation diagrams such as

→

χ

ψ

These diagrams only exist if χ is the anti-particle of ψ. They have an imaginary part,
which describes the decay ψχ → γγ (or gg), and accordingly C5 is imaginary. The effective
H is not Hermitian and the theory is not unitary! However, there is a good physical reason
for this violation of unitarity: bound states, such as e+e−, decay over time. The imaginary
part of H encodes the decay rate. The probability for finding the e− in e+e− is not 1 for all
times, because it will annihilate sooner or later.

This is the first complication compared to HQET. The second one is that the static La-
grangian

L = ψ†i∂tψ (5.37)

cannot serve as a starting point in non-relativistic theories. There are formal arguments to
show this, but the simple physical reason is that the e+e− in the bound state are not static.

They are close to their mass shell E = p2

2m + . . . and we thus should count Dt ∼ D2

2m ∼
mv2

2
as of the same order. Instead of powers of 1/mQ, we should count powers of v = |v|. A third
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5. Non-relativistic effective theories

complication is that the multiple photon/gluon exchanges between ψ and χ are unsuppressed.
More precisely, the exchange of Coulomb gluons needs to be taken into account to all orders.
In Coulomb gauge ∇ ·A = 0, the gauge Lagrangian reads

−1

4
GµνGµν =

1

2
G0iG0i −

1

4
GijGij

=
1

2

[
(∂iA0)2 + (∂0Ai)

2 − (∂iAj)
2 + “non-Abelian” terms

]
. (5.38)

The field A0 has no time derivatives and is thus not propagating. Since the action is quadratic,
one can integrate out A0. Its effect is then described by a potential, which is just the Fourier
transform of its propagator

V (x− y) = g2
s

∫
d3k

(2π)3
eik·(x−y) 1

k2
=

g2
s

4π|x− y|
. (5.39)

The leading-order effective Lagrangian for a non-relativistic particle–antiparticle pair is then

LNR =

∫
d3xψ†

[
i∂t +

∇2

2m

]
ψ −

∫
d3x1

∫
d3x2ψ

†(x1)taψ(x1)χ†(x2)taχ(x2)V (x1 − x2).

(5.40)
Accounting for V (x) to all orders amounts to solving the Schrödinger equation. The remaining
terms are treated as perturbations. Unfortunately, we thus found that the problem involves
three different scales

m (hard) mv (soft) mv2 (ultrasoft)

e+e− value 0.5 MeV 3.7 keV 25 eV

where we have used that for positronium V ∼ α. These three scales make it difficult to
organize the computations. In particular, in dimensional regularization the non-relativistic
integrals receive contributions from the hard region, since the scale mQ appears in the inte-
grand. Initially people used to perform the computations with a hard cutoff, which avoids
this problem but makes computations extremely cumbersome. Using the threshold expan-
sion [28], which is also called the “strategy of regions,” it became possible to eliminate the
unwanted hard corrections in dimensional regularization and to separate the soft and ultrasoft
corrections. An EFT approach that implements this separation on the level of the Lagrangian
is “velocity NRQCD” or “vNRQCD,” first proposed in Ref. [29]. An earlier solution called
“potential NRQCD” (“pNRQCD”) [30] amounts to integrating out the soft scale mv and to
constructing an effective theory containing only ultrasoft degrees of freedom:

LQCD (µ > m) hard + soft + ultrasoft
↓

LNRQCD (m > µ > mv) soft + ultrasoft
↓

LpNRQCD (mv > µ > mv2) ultrasoft

The fields in pNRQCD are not quarks and anti-quarks, but color-singlet and color-octet
Q̄Q-pairs:

S ≡ S(r) ∼ χ†(−r
2

)ψ(
r

2
), Oa ∼ χ†taψ, (5.41)

where S is the singlet and O the octet pair, which interact through potentials V (r) and
ultrasoft gluons.
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A. Loop integrals in dimensional regularization

In this appendix we derive the standard formula

I(α, β,∆) =

∫
ddk

(2π)d
(k2)α

(k2 −∆ + iε)β
=
i(−1)α+β

(4π)d/2

Γ
(
α+ d

2

)
Γ
(
d
2

) Γ
(
β − α− d

2

)
Γ(β)

∆α−β+d/2, (A.1)

and show that all one-loop integrals can be brought into this form.
As a first step, we consider I(α, β,∆) for parameters α + d/2 > 0 (IR convergence) and

β−α−d/2 > 0 (UV convergence), by performing a Wick rotation to Euclidean space k0 = ik0
E ,

k = kE . Dropping the Euclidean label in the following, this gives

I(α, β,∆) = i(−1)α+β

∫
ddk

(2π)d
(k2)α

(k2 + ∆)β
=
i(−1)α+βΩd

(2π)d

∫ ∞
0

dk
kd−1+2α

(k2 + ∆)β

=
i(−1)α+βΩd

2(2π)d
∆α−β+d/2

∫ ∞
0

dx
xα−1+d/2

(1 + x)β
, (A.2)

where we used polar coordinates in d dimensions with area Ωd of the unit sphere und changed
the integration to x = k2/∆. The remaining integral can be brought into standard form by
the transformation y = x/(1 + x), with dx = dy/(1− y)2,

I(α, β,∆) =
i(−1)α+βΩd

2(2π)d
∆α−β+d/2

∫ 1

0
dy yα+d/2−1(1− y)β−α−d/2−1

=
i(−1)α+βΩd

2(2π)d
∆α−β+d/2

Γ
(
α+ d

2

)
Γ
(
β − α− d

2

)
Γ(β)

, (A.3)

where in the last step we applied the general relation for the Beta function

B(a, b) =

∫ 1

0
dy ya−1(1− y)b−1 =

Γ(a)Γ(b)

Γ(a+ b)
. (A.4)

The final result (A.1) then follows with Ωd = 2πd/2/Γ(d/2), which can be derived from
Gaussian integrals in d dimensions∫

ddx e−x
2

=

[ ∫
dx e−x

2

]d
= πd/2

= Ωd

∫ ∞
0

dxxd−1e−x
2

=
Ωd

2

∫ ∞
0

dy yd/2−1e−y =
Ωd

2
Γ
(d

2

)
. (A.5)

The derivation only applies for integer values of d, with the general result defined by

Ωd =
2πd/2

Γ
(
d
2

) . (A.6)
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A. Loop integrals in dimensional regularization

Similarly, our derivation of (A.1) only applies as long as the integral is IR and UV convergent.
However, the right-hand side is an analytic function of d, α, and β except for poles for α+d/2
and β−α− d/2 at 0,−1,−2, . . .. The integral is then defined by the analytic continuation in
these variables. To evaluate the limit of d = 4− 2ε→ 4, one often needs the expansion

Γ(−n+ ε) =
(−1)n

n!

(1

ε
− γE + 1 + · · ·+ 1

n

)
+O(ε), (A.7)

where γE = 0.5772 . . . is the Euler–Mascheroni constant.
To demonstrate that all one-loop diagrams indeed take the form (A.1) one uses Feynman

parameterizations to combine multiple propagators into a single one, in the simplest case
using

1

AB
=

∫ 1

0
dx

1

[xA+ (1− x)B]2
. (A.8)

A non-trivial example including Lorentz indices is given by

Sµν =

∫
ddk

(2π)d
kµkν

(k2 + iε)((k − p)2 + iε)
=

∫
ddk

(2π)d

∫ 1

0
dx

kµkν

[k2 − 2xp · k + xp2 + iε]2

=

∫
ddk

(2π)d

∫ 1

0
dx

kµkν

[(k − xp)2 + x(1− x)p2 + iε]2
. (A.9)

Shifting k → k + xp, we can identify ∆ = −x(1− x)p2 − iε and find

Sµν =

∫
ddk

(2π)d

∫ 1

0
dx
kµkν + x2pµpν + x(pµkν + kµpν)

(k2 −∆)2

=

∫ 1

0
dx

∫
ddk

(2π)d

gµν

d k
2 + x2pµpν

(k2 −∆)2
, (A.10)

where we used that the linear terms in k vanish upon integration. For the quadratic terms
we used Lorentz invariance, i.e.,∫

ddk

(2π)d
kµkνf(k2) = gµν

∫
ddk

(2π)d
f̃(k2). (A.11)

Upon contraction with gµν this gives∫
ddk

(2π)d
k2f(k2) = d

∫
ddk

(2π)d
f̃(k2) (A.12)

and thus f̃(k2) = f(k2)k2/d in the integral. In the form (A.10) the master formula (A.1)
applies.

For more complicated integrals the generalized Feynman parameterization reads

1

Am1
1 Am2

2 · · ·A
mn
n

=
Γ(m)

Γ(m1) · · ·Γ(mn)

∫ 1

0
dx1 · · ·

∫ 1

0
dxn δ

(
1−

n∑
i=1

xi

) ∏n
i=1 x

mi−1
i[∑n

i=1 xiAi

]m , (A.13)

where m =
∑n

i=1mi. To derive this relation, we proceed by induction in n. The case n = 2
follows by taking derivatives of

1

AB
=

∫ 1

0
dx

∫ 1

0
dy δ(1− x− y)

1

(xA+ yB)2
(A.14)
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with respect to A and B, which gives

1

Am1Bm2
=

Γ(m1 +m2)

Γ(m1)Γ(m2)

∫ 1

0
dx

∫ 1

0
dy δ(1− x− y)

xm1−1ym2−1

(xA+ yB)m1+m2
. (A.15)

In the induction step, we assume (A.13) for n − 1, and then use (A.15) to combine An with
the rest:

1

Am1
1 Am2

2 · · ·A
mn
n

=
Γ(m)

Γ(m−mn)Γ(mn)

∫ 1

0
dx

∫ 1

0
dy δ(1− x− y)xmn−1ym−mn−1

× Γ(m−mn)

Γ(m1) · · ·Γ(mn−1)

∫ 1

0
dx1 · · ·

∫ 1

0
dxn−1

δ
(

1−
∑n−1

i=1 xi

)∏n−1
i=1 x

mi−1
i[

xAn + y
(∑n−1

i=1 xiAi

)]m
=

Γ(m)

Γ(m1) · · ·Γ(mn)

∫ 1

0
dy ym−mn−1

∫ 1

0
dx1 · · ·

∫ 1

0
dxn δ(1− y − xn)

× δ
(

1−
n−1∑
i=1

xi

) ∏n
i=1 x

mi−1
i[

xnAn + y
(∑n−1

i=1 xiAi

)]m . (A.16)

The induction step follows by rescaling xi → xi/y for i = 1, . . . , n − 1 and the remaining
integral∫ 1

0
dy y−1δ(1− y − xn) δ

(
1− 1

y

n−1∑
i=1

xi

)
=

∫ 1

0
dy y−1δ(1− y − xn) yδ

(
y −

n−1∑
i=1

xi

)
= δ
(

1−
n∑
i=1

xi

)
. (A.17)

The upper integration boundaries are not affected and can be set to ∞ in intermediate steps
to simplify the argument.
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B. Feynman rules for derivative couplings

Feynman rules for derivative couplings are formally derived by Fourier transform to momen-
tum space, just as for the standard case without derivatives, where a derivative ∂µ acting
on an incoming particle with momentum p gives −ipµ and the opposite sign for an outgoing
particle. Moreover, to facilitate calculations it is often useful to symmetrize the resulting
Feynman rule. Let us consider as an example the interaction term

δL =
g

4!
φ2(x)�φ2(x) (B.1)

and transform it to momentum space according to

φ(x) =

∫
k
e−ik·xφ̃(k) =

∫
ddk

(2π)d
e−ik·xφ̃(k), (B.2)

where k is an incoming momentum. In Fourier space the interaction becomes∫
ddx δL =

∫
k1

∫
k2

∫
k3

∫
k4

∫
ddx

g

4!
φ̃(k1)φ̃(k2)

[
− (k3 + k4)2

]
φ̃(k3)φ̃(k4)e−i(k1+k2+k3+k4)·x

= − g
4!

∫
k1

∫
k2

∫
k3

∫
k4

φ̃(k1)φ̃(k2)(k3 + k4)2φ̃(k3)φ̃(k4)(2π)dδ(4)(k1 + k2 + k3 + k4).

(B.3)

The disadvantage of this form is that two of the fields are singled out, so that in the appli-
cation one would need to remember on which fields the derivatives act. It is much easier to
symmetrize the Feynman rule using momentum conservation, i.e.,∫

ddx δL = − g
4!

∫
k1

∫
k2

∫
k3

∫
k4

φ̃(k1)φ̃(k2)φ̃(k3)φ̃(k4)(2π)dδ(4)(k1 + k2 + k3 + k4)

× 1

3

[
(k1 + k2)2 + (k1 + k3)2 + (k1 + k4)2

]
, (B.4)

which is now completely symmetric in the three distinct momentum pairs. Let us consider
the resulting amplitude for the four-point function, i.e., the scattering process

φ(p1)φ(p2)→ φ(p3)φ(p4), (B.5)

with p1,2 incoming and p3,4 outgoing. The 4! is canceled by the combinatorial factor from all
possible Wick contractions, just as for φ4 theory. Accordingly, the amplitude becomes

M = −g
3

[
(p1 + p2)2 + (p1 − p3)2 + (p1 − p4)2

]
= −g

3

[
p2

1 + p2
2 + p2

3 + p2
4

]
, (B.6)

which on the mass shell, p2
i = m2, reduces to M = −4gm2/3.
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C. CCWZ construction of phenomenological
Lagrangians

The construction of effective Lagrangians becomes more complicated if the symmetries of the
full theory are not fully realized by the ground state, i.e., if a symmetry becomes spontaneously
broken. In this case, a method to construct the effective Lagrangian was developed by Callan,
Coleman, Wess, and Zumino (CCWZ) in Refs. [31,32]. Here, we follow the presentation from
Ref. [33].

Suppose, the full theory is invariant under the group G, while the ground state is only
invariant under the subgroup H of G, giving rise to n = nG − nH Goldstone bosons, where
nG and nH denote the number of generators. The Goldstone bosons are described by fields
φi, collected in a vector Φ = (φ1, . . . , φn). This defines a vector space

M1 ≡
{

Φ : M4 → Rn|φi : M4 → R
}
, (C.1)

withM4 Minkowski space. The main point in the CCWZ construction amounts to establishing
a connection between the so-called quotient G/H and the Goldstone-boson fields, in such a
way that the effective Lagrangian can then be parameterized by resorting to a set of variables
parameterizing the elements of G/H. The application described in a main text concerns low-
energy QCD with G = SU(3)L × SU(3)R and H = SU(3)V (“Chiral perturbation theory”),
another generalized realizations of the Higgs sector with G = SU(2)L × U(1)Y and H =
U(1)EM (“Higgs effective field theory”).

The aim is to find a mapping φ(g,Φ) from G×M1 →M1 with the following properties

φ(e,Φ) = Φ ∀Φ ∈M1, e identity of G,

φ(g1, φ(g2,Φ)) = φ(g1g2,Φ) ∀ g1, g2 ∈ G, Φ ∈M1. (C.2)

Such a mapping is called an operation of G on M1, and the second condition the group-
homomorphism property. Note that we do not require this mapping to be linear, i.e., in
general φ(g, λΦ) 6= λφ(g,Φ), so the result will not define a representation.

Let us first consider Φ = 0, for which all fields are mapped onto the origin in Rn, which,
in a theory with Goldstone boson only, can be interpreted as the ground-state configuration.
Since the ground state is invariant under H, we require that φ(h, 0) = 0 for h ∈ H. Next, we
turn to the quotient G/H, which is defined as the set of all left cosets {gH|g ∈ G}. Here, the
set gH = {gh|h ∈ H} defines the left coset of g ∈ G, and the quotient is the set of all such
cosets. An important property of this construction is that cosets either completely overlap or
are completely disjoint.

Before proceeding, let us illustrate these properties using the symmetry group C4 of a
square with directed sides:
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C. CCWZ construction of phenomenological Lagrangians

This group consists of four elements C4 = {e, a, a2, a3}, where a can be interpreted as a
rotation by π/2. The nontrivial subgroup is H = {e, a2}, with left cosets

eH = {e, a2} = a2H, aH = {a, a3} = a3H. (C.3)

The quotient G/H therefore consists of the two elements {e, a2} and {a, a3}. Since the
elements of G/H are completely disjoint, any element of a given coset uniquely represents the
coset in which it appears. It is this property that is exploited in the CCWZ construction, to
which we now return.

For g ∈ G and h ∈ H we have

φ(gh, 0) = φ(g, φ(h, 0)) = φ(g, 0), (C.4)

i.e., the action on Φ = 0 is identical among a given coset gH, which can be interpreted in such
a way that the origin is mapped onto the same vector in Rn. Second, the mapping is injective
with respect to the elements of G/H (no two elements are mapped onto the same Φ), which
can be seen as follows: consider g, g′ ∈ G with g′ /∈ gH and let us assume φ(g, 0) = φ(g′, 0).
Then

0 = φ(e, 0) = φ(g−1g, 0) = φ(g−1, φ(g, 0)) = φ(g−1, φ(g′, 0)) = φ(g−1g′, 0), (C.5)

which implies g−1g′ ∈ H, i.e., g′ ∈ gH, in contradiction to the assumption, so that φ(g, 0) =
φ(g′, 0) must be false. From this one concludes that there exists an isomorphic mapping
between G/H and the Goldstone-boson fields. To account for the fact that they also depend
on x ∈ M4 (and are not just constant vectors in Rn as assumed so far), the cosets gH are
also allowed to depend on x.

For the construction of the effective Lagrangian we need the transformation behavior of
the Goldstone-boson fields under g ∈ G, which we can now study based on the isomorphism
just established. To each Φ corresponds a coset g̃H with some g̃. Let f = g̃h ∈ g̃H denote a
representative of this coset, i.e.,

Φ = φ(f, 0) = φ(g̃h, 0). (C.6)

Now,
φ(g,Φ) = φ(g, φ(g̃h, 0)) = φ(gg̃h, 0) = φ(f ′, 0) = Φ′, f ′ ∈ g(g̃H), (C.7)

so, in order to obtain the transformed Φ′ from a given Φ we simply need to multiply the
left coset g̃H representing Φ by g in order to obtain the new left coset representing Φ′. This
procedure then determines the transformation behavior of the Goldstone bosons, leaving the
task of finding a convenient parameterization of G/H.
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