The plots that follow are from H. Leutwyler’s lecture at the “School on flavor physics”, Benasque, 2008.
M_{π}^2 as a function of m_q

Lüscher, Lattice conference 2005 ETM collaboration, hep-lat/0701012

- Simulations with two light, dynamical quarks.
Low energy constant ℓ_3 and ℓ_4

$\bar{\ell}_3 \equiv \ln \frac{\Lambda_3^2}{M_\pi^2}$

$\bar{\ell}_4 \equiv \ln \frac{\Lambda_4^2}{M_\pi^2}$

Horizontal axis shows the value of $\bar{\ell}_3 \equiv \ln \frac{\Lambda_3^2}{M_\pi^2}$

Range for Λ_3 obtained in 1984 corresponds to $\bar{\ell}_3 = 2.9 \pm 2.4$.

Result of RBC/UKQCD 2008: $\bar{\ell}_3 = 3.13 \pm 0.33$ (stat) ± 0.24 (syst).

--

$\bar{\ell}_4 \equiv \ln \frac{\Lambda_4^2}{M_\pi^2}$

Horizontal axis shows the value of $\bar{\ell}_4 \equiv \ln \frac{\Lambda_4^2}{M_\pi^2}$

Range for Λ_4 obtained in 2007 corresponds to $\bar{\ell}_4 = 4.2 \pm 0.1$.
Scattering lengths a_0^0, a_0^2 from CHPT

Universal Band
- 1966
- 1983
- 1996

- Sizable corrections in a_0^0
- a_0^2 nearly stays put

- Colangelo, Gasser & L. 2001
- Numerical predictions from χPT
\[a_0^0 \ a_0^2 \text{ with } \ell_3 \text{ and } \ell_4 \text{ from lattice} \]

\begin{figure}
\centering
\includegraphics[width=\textwidth]{plot.png}
\end{figure}
$a_0^0 \ a_0^2$ from experiment

- Universal band
- Tree (1966), one loop (1983), two loops (1996)
- Prediction (χPT + dispersion theory, 2001)
- l_4 from low energy theorem for scalar radius (2001)
- NPLQCD (2005, 2007)
- l_3 and l_4 from MILC (2004, 2006)
- l_3 from Del Debbio et al. (2006)
- l_3 and l_4 from ETM (2007)
- l_3 and l_4 from RBC/UKQCD (2007)
- l_3 and l_4 from PACS-CS (preliminary)
- E865 Ke4 (2003) isospin corrected
- DIRAC (2005)
- NA48 K3π (2006)
- NA48 Ke4 (preliminary) isospin corrected

Exp.