Soft photons, method of regions, projectors

1. The following Feynman diagrams

describe the production of an $e^{-}(p) e^{+}\left(p^{\prime}\right)$ pair from a virtual photon (first diagram) together with one (second diagram) or two soft photons (last two diagrams) emitted from the outgoing electron. The result for the first diagram is $\mathcal{M}_{0}=-i e \bar{u}(p) \gamma^{\mu} v\left(p^{\prime}\right)$. We consider the diagrams in the soft limit where the outgoing photons are soft, i.e. $k, k_{1}, k_{2} \rightarrow 0$.
(a) Show that the leading term in the expansion around the soft limit is

$$
\begin{equation*}
\mathcal{M}_{1}(k)=\mathcal{S}_{1}(k) \mathcal{M}_{0}=e \frac{\varepsilon^{*} \cdot p}{k \cdot p} \mathcal{M}_{0} \tag{1}
\end{equation*}
$$

for the emission of a single photon from the electron (second diagram), where ε is the polarization vector of the photon.
(b) Show that the result for the emission of two photons from the electron (i.e. the sum of the last two diagrams) is

$$
\begin{equation*}
\mathcal{M}_{2}\left(k_{1}, k_{2}\right)=\mathcal{S}_{2}\left(k_{1}, k_{2}\right) \mathcal{M}_{0}=\frac{e^{2}}{2} \frac{\varepsilon_{1}^{*} \cdot p}{k_{1} \cdot p} \frac{\varepsilon_{2}^{*} \cdot p}{k_{2} \cdot p} \mathcal{M}_{0}=\frac{1}{2!} \mathcal{S}_{1}\left(k_{1}\right) \mathcal{S}_{1}\left(k_{2}\right) \mathcal{M}_{0} . \tag{2}
\end{equation*}
$$

2. Consider the following QED Wilson line operator

$$
S_{v}(y)=\exp \left[-i e \int_{0}^{\infty} d s v \cdot A(y+v s) e^{-\delta s}\right] .
$$

The factor $e^{-\delta s}$ was inserted to ensure that the integral converges for $s \rightarrow \infty$ and one takes $\delta \rightarrow 0$ after evaluating the matrix elements of the operator.
Compute the matrix elements of the operator $S_{v}(0)$ with final state photons

$$
\begin{aligned}
\mathcal{S}_{1}(k) & =\langle k, \varepsilon| S_{v}(0)|0\rangle, \\
\mathcal{S}_{2}\left(k_{1}, k_{2}\right) & =\left\langle k_{1}, \varepsilon_{1} ; k_{2}, \varepsilon_{2}\right| S_{v}(0)|0\rangle
\end{aligned}
$$

and show that the results are identical to the one obtained in the previous exercise if $v^{\mu} \propto p^{\mu}$, i.e. if the reference vector v^{μ} is chosen along the direction of the electron momentum. The state $|k, \varepsilon\rangle$ contains of photon of polarization λ and associated polarization vector $\varepsilon(\vec{k}, \lambda)$.
3. Using the method of regions, verify the leading term in the expansion of the following integral

$$
I=\int_{0}^{\infty} d k \frac{k^{1+\epsilon}}{\left(k^{2}+m^{2}\right)\left(k^{2}+M^{2}\right)}=-\frac{1}{M^{2}}\left[\ln \frac{m}{M}+\mathcal{O}\left(\frac{m^{2}}{M^{2}}\right)\right]+\mathcal{O}(\epsilon) .
$$

To obtain the expansion, expand the integrand in the following two regions

$$
\begin{array}{ll}
\text { hard: } & k \sim M, \\
\text { soft: } & k \sim m,
\end{array}
$$

compute the contributions, add up and take the limit $\epsilon \rightarrow 0$ at the end. The following integral is useful

$$
\int_{0}^{\infty} d x \frac{x^{a}}{(1+x)^{b}}=\frac{\Gamma(a+1) \Gamma(b-a-1)}{\Gamma(b)}
$$

4. Consider two light-cone vectors n_{μ} and \bar{n}_{μ}, with $\bar{n} \cdot n=2$. Show that the operators

$$
P_{+}=\frac{\not x \eta}{4}, \quad P_{-}=\frac{\not \partial h}{4},
$$

are projection operators with $P_{+}+P_{-}=1$.
5. Use the projection operators $P_{ \pm}$to split the quark field into two components

$$
\psi(x)=\xi(x)+\eta(x)=P_{+} \psi(x)+P_{-} \psi(x) .
$$

Show that
(a) $\not \hbar \xi(x)=0$,
(b) $\bar{\xi}(x) \xi(x)=0$,
(c) $\bar{\xi}(x) \not D_{\perp} \xi(x)=0$,
(d) $\bar{\xi}(x) \gamma^{\mu} \xi(x)=n^{\mu} \bar{\xi}(x) \frac{\vec{\pi}}{2} \xi(x)$.

