1. The S-matrix is related to the transfer matrix T via

$$
\boldsymbol{S}=\mathbf{1}+i \boldsymbol{T}
$$

(a) Show that the unitarity of the S-matrix implies

$$
\begin{equation*}
-i\left(\boldsymbol{T}-\boldsymbol{T}^{\dagger}\right)=\boldsymbol{T} \boldsymbol{T}^{\dagger} \tag{1}
\end{equation*}
$$

for the T-matrix. The usual scattering amplitude \mathcal{M} of two particles into a final state with momenta $k_{1}, k_{2}, \ldots k_{n}$ is obtained from the matrix element

$$
\left\langle k_{1}, k_{2}, \ldots k_{n}\right| \boldsymbol{T}\left|p_{1} p_{2}\right\rangle=\mathcal{M}\left(p_{1}, p_{2} \rightarrow k_{1}, \ldots k_{n}\right)(2 \pi)^{4} \delta^{(4)}\left(p_{1}+p_{2}-\sum_{i} k_{i}\right)
$$

(b) Consider the unitarity relation (1) and take the $2 \rightarrow 2$ matrix element. Show that, after inserting a full set of states on the right-hand side, this leads to

$$
\begin{aligned}
& i\left[\mathcal{M}^{*}\left(k_{1}, k_{2} \rightarrow p_{1}, p_{2}\right)-\mathcal{M}\left(p_{1}, p_{2} \rightarrow k_{1}, k_{2}\right)\right]= \\
& \quad \sum_{X} \mathcal{M}\left(p_{1}, p_{2} \rightarrow k_{X}\right) \mathcal{M}^{*}\left(k_{1}, k_{2} \rightarrow k_{X}\right)(2 \pi)^{4} \delta^{(4)}\left(p_{1}+p_{2}-k_{X}\right)
\end{aligned}
$$

Note: The sum over all states on the right-hand state includes integrals over the phase-spaces since we have to sum over all possible kinematic configurations.
(c) Then, considering forward scattering and rewriting the right-hand side as the total cross section, we obtain the usual form of the optical theorem

$$
2 \operatorname{Im} \mathcal{M}\left(p_{1}, p_{2} \rightarrow p_{1}, p_{2}\right)=F \sigma_{\mathrm{tot}}
$$

where $F=4 \sqrt{\left(p_{1} \cdot p_{2}\right)^{2}-m_{1}^{2} m_{2}^{2}}$ is the usual flux factor and $\sigma_{\text {tot }}$ is the cross section for the scattering of the initial state with p_{1}, p_{2} into an arbitrary final state.
2. For the total cross section of $e^{+} e^{-}$into hadrons, one is able to write the optical theorem in especially simple by evaluating the leptonic part of the cross section, after which it reads

$$
\begin{equation*}
\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)=-\frac{4 \pi \alpha}{s} \operatorname{Im} \Pi_{h}(s) \tag{2}
\end{equation*}
$$

where the hadronic vacuum polarization $\Pi_{h}(s)$ is given by the vector current two-point function

$$
\begin{equation*}
\Pi_{h}^{\mu \nu}\left(q^{2}\right)=\int d^{4} x\langle 0| T\left\{J^{\mu}(x) J^{\nu}(0)\right\}|0\rangle \tag{3}
\end{equation*}
$$

via

$$
\begin{equation*}
\Pi_{h}^{\mu \nu}\left(q^{2}\right)=\left(g^{\mu \nu} q^{2}-q^{\mu} q^{\nu}\right) \Pi_{h}\left(q^{2}\right) . \tag{4}
\end{equation*}
$$

The quark electromagnetic current is

$$
J^{\mu}(x)=\sum_{f} e_{f} \bar{\psi}_{f}(x) \gamma^{\mu} \psi_{f}(x)
$$

The goal of this exercise is to verify (2) at leading order by computing the imaginary part of the one-loop contribution

(a) Write down the loop diagram. Neglect fermion masses and consider $g_{\mu \nu} \Pi_{h}^{\mu \nu}$ to be able to work with a scalar quantity. Simplify the numerator by evaluating the fermion trace.
(b) Rewrite the integration over the loop momentum k in the form

$$
\int d^{d} k=\int d^{d} k \int d^{d} r \delta^{(d)}(q-k-r)
$$

so that r is the momentum flowing through the lower fermion line.
(c) Use the Cutkosky rules, which state that each cut propagator is replaced by

$$
\frac{i}{p^{2}-m^{2}+i \epsilon} \rightarrow \theta\left(p^{0}\right)(2 \pi) \delta\left(p^{2}-m^{2}\right)
$$

to obtain the imaginary part. Show that this leads to the two-particle phase-space integral which we have evaluated earlier. Since the imaginary part is finite, it can be evaluated directly in $d=4$.
(d) Take the result for $\operatorname{Im} \Pi_{h}(s)$, plug into (2) and verify that it agrees with our earlier result

$$
\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)=\frac{4 \pi \alpha^{2}}{3 s} N_{c} \sum_{f} e_{f}^{2}
$$

