QCD

Exercise 6

$e^{+} e^{-} \rightarrow q \bar{q}$

1. Compute the scattering amplitude \mathcal{M} for the process $e^{-}\left(p_{1}\right) e^{+}\left(p_{2}\right) \rightarrow \bar{q}\left(p_{3}\right) q\left(p_{4}\right)$.
2. Square the amplitude \mathcal{M}, then average over the incoming spins and sum over the outgoing ones, i.e. compute the quantity

$$
\frac{1}{4} \sum_{\text {spins }}|\mathcal{M}|^{2} .
$$

Remember that

$$
\sum_{s} u(p, s) \bar{u}(p, s)=\not p+m, \quad \quad \sum_{s} v(p, s) \bar{v}(p, s)=\not p-m .
$$

3. Show that the general formula for the cross section for the scattering process $p_{1}+p_{2} \rightarrow p_{3}+\ldots p_{n}$,

$$
d \sigma=\frac{1}{4 \sqrt{\left(p_{1} \cdot p_{2}\right)^{2}-m_{1}^{2} m_{2}^{2}}} \prod_{i=3}^{n} \frac{d^{3} p_{i}}{(2 \pi)^{3} 2 E_{i}}|\mathcal{M}|^{2}(2 \pi)^{4} \delta^{(4)}\left(p_{1}+p_{2}-\sum_{k=3}^{n} p_{k}\right)
$$

with $p_{1}^{2}=p_{2}^{2}=m^{2}$ reduces to

$$
\frac{d \sigma}{d \Omega}=\frac{1}{64 \pi^{2} s} \beta|\mathcal{M}|^{2}
$$

in the center-of-mass frame of the collision for $2 \rightarrow 2$ scattering with massless incoming particles. The quantity $\beta=|\vec{p}| / E$ is the velocity of the outgoing particles.
4. Using the results of the previous exercises, compute the total, spin-averaged cross section for $e^{-}\left(p_{1}\right) e^{+}\left(p_{2}\right) \rightarrow \bar{q}\left(p_{3}\right) q\left(p_{4}\right)$ neglecting the electron mass.

