1. If we consider QCD with four massless flavors, how many Goldstone bosons would arise in the breaking of chiral symmetry?
2. In the lecture, we encountered the relation (no summation over a)

$$
\langle 0|\left[Q_{A}^{a}, P^{a}(y)\right]|0\rangle=-\frac{1}{n_{f}}\langle 0| \bar{\psi}(0) \psi(0)|0\rangle=-\langle 0| \bar{u}(0) u(0)|0\rangle,
$$

where n_{f} is the number of massless quarks, Q_{A}^{a} the axial charge, and

$$
P^{a}(y)=\bar{\psi}(y) t^{a} \gamma_{5} \bar{\psi}(y) .
$$

Together with the Goldstone theorem, this implies that QCD has pseudoscalar Goldstone bosons, if the quark condensate is nonvanishing. Derive this relation using the canonical equal-time anti-commutation relations for the quark fields. The relation

$$
[a b, c d]=a\{b, c\} d-a c\{b, d\}+\{a, c\} d b-c\{a, d\} b
$$

is useful.
3. The effective Lagrangian for the Goldstone bosons associated with spontaneous chiral symmetry breaking takes the form

$$
\begin{equation*}
\mathcal{L}=\frac{F^{2}}{4}\left\langle\partial_{\mu} U^{\dagger} \partial^{\mu} U\right\rangle+\mathcal{O}\left(p^{4}\right) \tag{1}
\end{equation*}
$$

where $\langle\ldots\rangle$ denotes the trace and the field $U(x)$ can be parameterized in terms of the Goldstone field π^{a} as

$$
U(x)=\exp \left(\frac{2 i}{F} \pi^{a} t^{a}\right)
$$

The generators t^{a} correspond to the broken symmetries. Expand the Lagrangian to fourth order in the Goldstone fields π^{a}. For simplicity, work with two massless flavors, where $t^{a}=\sigma^{a} / 2$.
4. Derive the Feynman rules for the Goldstone propagator and for the interaction of four Goldstone bosons.
5. Derive the Goldstone-boson scattering cross section, i.e. the cross section for the process

$$
\pi^{a}\left(p_{1}\right) \pi^{b}\left(p_{2}\right) \rightarrow \pi^{b}\left(p_{3}\right) \pi^{c}\left(p_{4}\right)
$$

6. To construct the effective Lagrangian, we added external sources for lefthanded and right-handed vector currents to the QCD Lagrangian and transformed these as

$$
\begin{aligned}
r_{\mu} & \rightarrow V_{R} r_{\mu} V_{R}^{\dagger}-i\left(\partial_{\mu} V_{R}\right) V_{R}^{\dagger} \\
l_{\mu} & \rightarrow V_{L} l_{\mu} V_{L}^{\dagger}-i\left(\partial_{\mu} V_{L}\right) V_{L}^{\dagger}
\end{aligned}
$$

(a) Show that with these transformations of the external fields the QCD Lagrangian becomes invariant under local chiral transformations $V_{L}(x)$ and $V_{R}(x)$.
(b) Show that the leading-power chiral perturbation theory Lagrangian (1) is invariant under local transformations if we replace the regular derivatives by covariant one

$$
i \partial_{\mu} \rightarrow i D_{\mu}=i \partial_{\mu} U+r_{\mu} U-U l_{\mu}
$$

