1. What are the symmetry factors for the two diagrams below?

2. Derive the identity

$$
\begin{equation*}
U_{R}(\alpha) t_{R}^{a} U_{R}^{-1}(\alpha)=t_{R}^{b} U_{A}^{b a}(\alpha) \tag{1}
\end{equation*}
$$

where

$$
U_{R}(\alpha)=\exp \left(i \alpha^{a} t_{R}^{a}\right)
$$

is a group element in the representation R. The quantity $U_{A}^{a b}(\alpha)$ is the same group element in the adjoint representation. Hint: Prove the infinitesimal form of (1).
3. Invariant tensors. The trace

$$
M_{R}^{a_{1} \ldots a_{n}}=\operatorname{tr}\left(t_{R}^{a_{1}} \ldots t_{R}^{a_{n}}\right)
$$

is invariant under the substitution $t_{R}^{a_{i}} \rightarrow U_{R}(\alpha) t_{R}^{a_{i}} U_{R}^{-1}(\alpha)$. Using (1), show that this implies

$$
\begin{equation*}
\sum_{i} f_{a \hat{a}_{i} a_{i}} M_{R}^{a_{1} \ldots \hat{a}_{i} \ldots a_{n}}=0 \tag{2}
\end{equation*}
$$

in infinitesimal form, where \hat{a}_{i} is inserted in position i.
4. Casimir Operators. Show that (2) implies that the Casimir operators

$$
C_{R, R^{\prime}}(n)=\operatorname{tr}\left(t_{R^{\prime}}^{a_{1}} \ldots t_{R^{\prime}}^{a_{n}}\right) t_{R}^{a_{1}} \ldots t_{R}^{a_{n}}
$$

commute with all generators. According to Schur's lemma this then implies that $C_{R, R^{\prime}}(n)$ is a constant times the unit matrix if R is irreducible.
5. Approximate solution of the RG for the strong coupling. Define $a(L)=\alpha_{s}(\mu) /(4 \pi)$ so that the RG equation reads

$$
\frac{d a}{d L}=\beta(a) / 2=-a\left(\beta_{0} a+\beta_{1} a^{2}+\ldots\right),
$$

where $L=\ln \left(\mu^{2} / \Lambda^{2}\right)$. This equation can be solved using separation of variables,

$$
L=\int \frac{d a}{\beta(a) / 2},
$$

but when including higher-order terms, one does not obtain an analytic expression for $a \equiv a(L)$. Solve the equation iteratively by expanding

$$
\int \frac{d a}{\beta(a) / 2}=-\int \frac{d a}{\beta_{0} a^{2}}\left[1-\frac{\beta_{1} a}{\beta_{0}}+\ldots\right]=\frac{1}{a \beta_{0}}+\frac{\beta_{1} \ln a}{\beta_{0}^{2}}+\ldots
$$

and using the lower-order solution in the higher-order terms.
(a) Show that this leads to the expression

$$
\begin{equation*}
a=\frac{1}{\beta_{0} L}-\frac{\beta_{1} \ln L}{\beta_{0}^{3} L^{2}}+\ldots \tag{3}
\end{equation*}
$$

Note: simply solving the equation leads to $\ln \beta_{0} L$ instead of $\ln L$ on the right-hand side of the equation, but the $\ln \beta_{0}$ terms can be absorbed into a redefinition of Λ.
(b) What is the meaning of the scale Λ and what is its approximate numerical value, if we use the world average $\alpha_{s}\left(M_{Z}=91.2 \mathrm{GeV}\right)=0.118$ as an input? To get the numerical value use

$$
\begin{aligned}
& \beta_{0}=\frac{11}{3} C_{A}-\frac{4}{3} T_{F} n_{f}, \\
& \beta_{1}=\frac{34}{3} C_{A}^{2}-\frac{20}{3} C_{A} T_{F} n_{f}-4 C_{F} T_{F} n_{f},
\end{aligned}
$$

What is the appropriate value for n_{f} in (3)? The answer to this question is nontrivial and will be discussed in the lectures. Feel free to choose $n_{f}=6$ for the determination of Λ.

