$$\frac{\text{Fadobev} - \text{Popov Lagrenzian}}{\text{The simplast way to quantize non-abelian sauge theories is the path-integral formalism. The noive form of the path integral is
$$Z = \int \partial A_{\mu} \exp\left(iS[A]\right) \quad (*)$$

$$\lim_{X \to A} \partial A_{\mu} \exp\left(iS[A]\right) \quad (*)$$$$

One inserts
Integral over all gaze caffs

$$1 = \int D \propto S(G(A_{x})) \det \left(\frac{SG(A_{x})}{S \propto}\right)$$

into the functional integral, where
 $A_{x}^{\dagger} = e^{ix^{a}t^{a}} \left[A^{m} - \frac{i}{3}\partial^{t}\right]e^{-ix^{a}t^{a}}$

The function
$$G(A_{\star})$$
 fixes a gauge
but we reftore invariance by integrating
over all sanges.

Chrosping G(A) = dt A, - w, nithering
over w(x) with Gaussian weight &
representing the determinent as
a path integral over a Lorentz-scaler
Grassman fields y & & y
det (
$$\frac{S_{g}^{2}(A)}{S_{q}^{\circ}}$$
) = foly foly
.exp(-i ft x filty y (x) $\frac{S_{g}^{2}(A(x))}{S_{q}^{\circ}(y)}$ y

$$\Delta \mathcal{L}_{\text{TP}} = -\frac{1}{2(1-\xi)} \left(\partial^{4} A^{\alpha}_{T} \right)^{2} - \overline{\eta}^{\alpha} \Box \eta^{\alpha} + \Im f_{abc} \left(\partial^{b} \overline{\eta}^{\alpha}_{T} \right) + A^{c}_{\mu} \eta^{b}.$$