
1 The Faddeev-Popov Lagrangian

Note: The following discussion is taken from my Standard-Model script.

We now derive the gauge fixing terms needed to quantize the gauge theory. By far the
simplest method is to use the path integral, which for a gauge theory naively takes the form

Z =

∫

DAµ exp (iS[Aµ]) with S[Aµ] = −1

4

∫

d4xF a
µνF

µνa . (1)

We have left out the fermions, since they do not play a role for the following discussion. The
problem with the above expression is that many field configurations lead to exactly the same
value of the action. In particular, all pure gauge configurations

Aµ(x) = − i

g
V(x)∂µV

†(x) (2)

give a vanishing action, since they can be obtained from Aµ(x) = 0 with a gauge transfor-
mation. For gauge invariant quantities, the integration over physically equivalent gauge field
configurations amounts to a trivial but infinite prefactor, so that (1) is ill-defined.1

To obtain a meaningful expression, we would like to factor out this integration. Faddeev
and Popov [1] came up with a general method to do this.

1.1 A simple example

Before applying their method to the the path integral, let us go over the necessary steps for
an ordinary integral. Consider

I =

∫

dx

∫

dy f(x, y) (3)

where f(x, y) is a rotation invariant function. The rotation invariance corresponds to the
gauge invariance of the path integral integrand. We want to bring this into the form

I =

∫ 2π

0

dθ

∫ ∞

0

dr F (r) , (4)

where the first factor is the trivial integration over the symmetry group. For this simple
integral, the problem is solved by using spherical coordinates, but for the gauge symmetry we
do not know how to make a coordinate transformation in which the trivial part of the integral
factors out. Faddeev and Popov provided a general method to achieve this goal and we now
illustrate it in our trivial example, before applying exactly the same procedure to the path
integral for gauge theory.

1The problem does not arise in the discretized version of gauge theories if one works with the link fields
U(y, x) instead of the gauge field Aµ(x). The link fields U(y, x) are elements of the compact gauge group so
that the integration over the symmetry group is finite. In lattice simulations, one is therefore not forced to fix
the gauge.
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As a first step, we fix a direction (a gauge) by the condition

yθ = x sin θ + y cos θ
!
= 0 (5)

However, integrating over only a single direction might be dangerous. To be sure to maintain
rotation invariance, we also integrate over all directions in the form

∫ 2π

0

dθδ(yθ)

∣

∣

∣

∣

∂yθ
∂θ

∣

∣

∣

∣

= 2 . (6)

The factor 2 arises because the directions θ and θ + π are equivalent. The jacobian is

∣

∣

∣

∣

∂yθ
∂θ

∣

∣

∣

∣

yθ=0

= x cos θ − y sin θ|yθ=0 =
√

x2 + y2 (7)

Now we insert (6) into the original integral

I =

∫ 2π

0

dθ

∫

dx

∫

dy δ(yθ)
1

2

√

x2 + y2 f(x, y) (8)

Now comes the crucial step: we rotate our coordinate system by an angle θ so that the new
coordinates (x′, y′) are given by

y′ = yθ x′ = x cos θ − y sin θ (9)

After this transformation the integrand no longer depends on θ and we have thus factored out
the trivial integration over the symmetry group:

I =

∫ 2π

0

dθ

∫

dx′
∫

dy′ δ(y′)
1

2

√

x′2 + y′2 f(x′, y′)

= (2π)

∫

dx′
x′

2
f(x′, 0) (10)

Note that we have made use of rotation invariance of the integrand to replace f(x, y) →
f(x′, y′).

1.2 The real thing

We now apply the same technique to the path integral (1). We will consider a general linear
gauge fixing functional G(A) and then integrate over all gauges in the form2

1 =

∫

Dα δ(G(Aα)) det

(

δG(Aα)

δα

)

(11)

2The identity (11) only holds if the solution to the δ-function condition is unique, see (6). It isn’t, because
of “Gribov copies” but these do not contribute in perturbation theory.
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with α = αaT
a and where the gauge transformed field is defined as

Aµ
α = eiα

[

Aµ − i

g
∂µ

]

e−iα (12)

The above two equations are completely analogous to (5) and (6) in our simple example. Note
that the jacobian in (11) is independent of α for a linear gauge fixing condition.

We now proceed in the same way as above, by first inserting (11) into the path integral
(1) and then performing a variable transformation Aµ → Aµ

α. The transformation is a shift,
followed by a unitary rotation and leaves the measure invariant. Dropping the index α on the
gauge field, we arrive at

Z = (

∫

Dα)×
∫

DAµ δ(G(A)) det

(

δG(A)

δα

)

exp (iS[Aµ]) . (13)

We have succeeded to factor out the integration over the gauge group, at the price of making
the functional integral more complicated. The remaining task is to bring the integral into a
form suitable for perturbation theory.

To do so, we choose the gauge fixing condition to have the form

G(A) = ga(A)− ωa(x) (14)

for some function ω(x) . Popular choices for the remainder are

ga(A) = ∂µAa
µ (“Lorenz gauge”) (15)

ga(A) = nµAa
µ (“axial gauge”) (16)

The first one is most often adapted, since it does not require the introduction an additional
external vector, as is the case for axial gauge. To get rid of the δ-functional, we then integrate
over all functions ωa(x) with Gaussian weight:

Z =

∫

Dω exp

(

−i
∫

d4x
(ωa(x))2

2(1− ξ)

)

×
∫

DAµ δ(g
a(A)− ωa) det

(

δga(A)

δα

)

exp (iS[Aµ])

=

∫

DAµ det

(

δga(A)

δα

)

exp

(

iS[Aµ]− i

∫

d4x
1

2(1− ξ)
(ga(A))2

)

. (17)

The extra term is precisely what was added to the QED Lagrangian to achieve gauge fixing.
The only remaining problem is the presence of the jacobian determinant. To compute the
determinant in perturbation theory, we now represent it as an integral over auxiliary Grassman
“ghost” fields ηa and η̄a:

det

(

δga(A)

δα

)

=

∫

DηDη̄ exp

(

−i
∫

d4xd4y η̄a(x)
δga(A(x))

δαb(y)
ηb(y)

)

. (18)
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Note that these fields do not carry a Dirac index and transform as scalars under Lorentz
transformations. Since they have the wrong relation between spin and statistics the Feynman-
De Witt-Faddeev-Popov ghosts η and η̄ cannot be interpreted as physical particles. In fact,
their role is precisely to cancel the unphysical degrees of freedom in the gauge field Aµ.
However, perturbation theory for these unphysical degrees of freedom works exactly as in the
standard case.

Let us now work out the explicit form of the ghost action for Lorentz gauge. We have

Taga(A) = Ta∂µAα
a
µ = ∂µeiα

(

Aµ −
i

g
∂µ

)

e−iα

= ∂µ
(

Aµ −
1

g
∂µα+ i [α,Aµ]

)

+O(α2)

= Ta∂µ
(

Aa
µ −

1

g
∂µα

a − fabcα
bAc

µ

)

+O(α2) (19)

The functional derivative thus yields

δga(A(x))

δαb(y)
= −1

g

(

δab � + gfabc∂
µAc

µ + gfabcA
c
µ∂

µ
)

δ(4)(x− y) (20)

When inserted into (18), the first term on the right gives a kinetic term for the ghost fields,
while the second one gives an interaction between the gauge fields and the ghosts. Because
of the prefactor 1/g, the kinetic term is not properly normalised. One then rescales the ghost
fields by a factor

√
g to bring the action into canonical form.

In an Abelian gauge theory fabc = 0. In this case, the ghost fields no longer interact with
the gauge fields and can immediately be integrated out so that only the gauge fixing term
remains in the action.

Exercise Derive the gauge-fixing Lagrangian in axial gauge ga(A) = nµAa
µ and derive the

associated gauge-boson propagator Gµν(k) . Show that for ξ = 1 this propagator fulfils
nµGµν(k) = nνGµν(k) = 0 and that this implies that for this choice the ghost fields do not
interact. The axial gauge has furthermore the property that

lim
k2→0

k2kµGµν(k) = 0 , (21)

so that the unphysical polarisation does not have an associated propagator pole. For this rea-
son, these gauges are also referred to as “physical” gauges. Their disadvantage is the necessity
for an external reference vector and the complicated form of the gauge-boson propagator.

2 The Lagrangian for a General Non-Abelian Gauge

Theory

Let us summarize what we have found so far: Consider a gauge group G of “dimension”
N (for SU(n) : N ≡ n2 − 1), whose N generators, Ta, obey the commutation relations
[

Ta,Tb
]

= ifabcT
c, where fabc are called the “structure constants” of the group.
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The Lagrangian density for a gauge theory with this group, with a fermion multiplet ψi,
is given by

L = −1

4
F a
µνF

aµν + iψ (γµDµ −mI)ψ − 1

2(1− ξ)
(∂µAa

µ)
2 + LFP (22)

where

F a
µν = ∂µA

a
ν − ∂νA

a
µ − g fabcAb

µA
c
ν , (23)

Dµ = ∂µI+ i gTaAa
µ (24)

and
LFP = −η̄a∂µ∂µηa + g facb(∂

µη̄a)Ac
µ η

b. (25)
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