Transformation of Goblotone fields

Usually fields transform linearly as a representation of the asymmetry grove
$G:$

$$
\stackrel{\rightharpoonup}{\varphi} \xrightarrow{g \in G} M(g) \stackrel{\rightharpoonup}{y}
$$

However Goblotone bosons are excitations around a vacuum state that is not invariant under the symmetry. We will see that the fields descriting them transform nonlinearly. We will analyze a geneal situation, where a symmetry group G is spontane onsly broken to a subgroup
H. There are then $n=n_{G}-n_{H}$ Goldstone bosons, which we collect into a vector $\vec{\pi}(x)$. A realization of the group is a mapping

$$
\vec{\pi} \xrightarrow{g} \vec{\pi}^{\prime}=\vec{f}(g, \vec{\pi}) \quad \forall g \in G .
$$

The mapping must obey composition

$$
\vec{f}\left(g_{1} \cdot g_{2}, \vec{\pi}\right)=\vec{f}\left(g_{1}, f\left(g_{2}, \stackrel{\rightharpoonup}{\pi}\right)\right) .
$$

Remarkably, this determines \vec{f} essentially uniquely. To see this consider the image of the origin $\vec{f}(g, \vec{\pi}=0)$. Since the unbroken subgroup H is linearly realized,
it maps the origin outs itself

$$
\vec{f}(h, 0)=0 \quad \forall h \in H .
$$

Therefore, we have

$$
\vec{f}(g h, 0)=\vec{f}(g, 0)
$$

So $\stackrel{f}{f}$ lives on the coset space G / H and privies a map from G / H to the Gddeione fields. This map is alpo invertible since $\vec{f}\left(g_{1}, 0\right)=\vec{f}\left(g_{2}, 0\right)$ implies that $g_{1} H=g_{2} H$.

$$
\text { Proof: } \begin{aligned}
\text { Pf }\left(g_{1}^{-1} g_{2}, 0\right) & =\vec{f}\left(g_{1}^{-1}, \vec{f}\left(g_{2}, 0\right)\right) \\
& =\vec{f}\left(g_{1}^{-1}, \vec{f}\left(g_{1}, 0\right)\right)=\vec{f}\left(g_{1}, g_{1}, 0\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\vec{f}(e, 0)=0 \\
& \rightarrow g_{1}^{-1} g_{2} \in H \rightarrow g_{2} H=g_{1} H
\end{aligned}
$$

So the function $\vec{\pi}=\vec{f}(g, 0)$ provides a one-to-one mopping between G / H and values of the field. The transformation of the fell follows from the action of g on the coset poe. The remaining freedom is the chrice of coordinates on G / H. Consider $\left.G=\operatorname{su} u_{L}\left(n_{f}\right) \times s u_{R} / n \rho\right)$

$$
\begin{aligned}
& =\left\{\left(V_{L}, V_{R}\right), V_{L, R} \in \operatorname{sul}\left(u_{f}\right)\right\} \\
& \left.H=\operatorname{sun}\left(u_{f}\right)=\left\{\left(V_{j}, V\right), V \in \operatorname{suln} f\right)\right\}
\end{aligned}
$$

The coset pace G / H associated with an element $\tilde{g} \equiv\left(\tilde{v}_{L}, \tilde{v}_{R}\right)$ is the set

$$
\tilde{g} H=\left\{\left(\tilde{V}_{L} \cdot V, \tilde{V}_{R}, \cdot V\right), V \in \operatorname{sh}\left(w_{f}\right)\right\}
$$

To parametrize G / H, we can select one element of end set $g H$. A simple choice is to write

$$
\left(\tilde{V}_{L}, \tilde{V}_{R}\right)=\underbrace{\left(1, \tilde{V}_{R} \tilde{V}_{L}^{+}\right.}_{\substack{\text { represent five } \\ \text { element }}}) \cdot(\underbrace{\tilde{V}_{L} \cdot V, \tilde{V}_{L} \cdot V}_{\in H})
$$

The matrix $U=V_{R} V_{L}^{+}$parametrizes G / H and transforms as

$$
u \xrightarrow{g} V_{R} u V_{L}^{+} \text {for } g \leqq\left(v_{-}, v_{R}\right)
$$

All that is left is to perameterige $U(x) \in$ Sulky).
The stenderd parametrization used in the literature is

$$
U(x)=\exp \left[i t^{a} \alpha^{a}(x)\right]
$$

with $\alpha^{a}=\frac{2 \pi^{q}(x)}{F}, a=N_{f}^{2}-1$. The fields $\pi^{a}(x)$ are the Goblotone boson fields.

For $h_{f}=2$, we have

$$
U(x)=\exp \left[i \sigma^{a} \pi^{a} / \bar{\tau}\right]=\exp \left[\frac{i}{\bar{F}}\left(\begin{array}{cc}
\pi^{0} & \sqrt{2} \pi^{+} \\
\sqrt{2} \pi^{-} & -\pi^{0}
\end{array}\right)\right]
$$

In the second skep, we have written $\pi^{\prime}, \pi^{2}, \pi^{3}$ in terms of linear combinations with definite charge. Let us also anticipate that
the courtont \mp introduced to moke the exponent dimensionless will correspond to the $\pi^{ \pm}$decay constant.

To see this, we should write down an effective Lagrangian for the field $U(x)$.

