Feynman rules
We now want to derive the Feynman rules for $Q C D$. Before doing 80 , it is worth revisiting the derivation for a sealar theory.
let

$$
\mathcal{L}=\underbrace{\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{m^{2}}{2} \phi^{2}}_{\ell_{0}} \underbrace{-\frac{\lambda}{4!} \phi^{4}}_{\mathcal{L}_{I}}
$$

Define

$$
\begin{aligned}
\left\langle\phi_{1} \cdots \phi_{n}\right\rangle & =\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle \\
& =\frac{1}{z} \int \phi \phi \phi\left(x_{1}\right) \cdot \ldots \cdot \phi\left(x_{n}\right) e^{i \int d^{4} x d_{0}} \\
& =\left\langle 01 T\left[\hat{\phi}\left(x_{1}\right) \cdot \ldots . . \hat{\phi}\left(x_{n}\right)\right](0\rangle\right.
\end{aligned}
$$

Feynman rules are a graphical way of representing Wick's theorem:

$$
\left\langle\phi_{1} \cdot \ldots . . \phi_{n}\right\rangle=\sum_{\text {all pairing }}\left\langle\phi_{i,} \phi_{i_{2}}\right\rangle\left\langle\phi_{i s} \phi_{i_{n}}\right\rangle \cdot \ldots .\left\langle\phi_{i_{n-1}} \phi_{i n}\right\rangle
$$

$$
x_{i} \xrightarrow{x_{i_{2}}}
$$

e.8.

Interacting theory:

$$
\begin{aligned}
& z\left\langle\phi_{1} \cdot \ldots \cdot \phi_{4} e^{i \int d^{4} x h_{I}}\right\rangle \\
& =\left\langle\phi_{1} \cdot \ldots \cdot \phi_{4}\right)-i \frac{\lambda}{4!} \int d^{4} x\left\langle\phi_{1} \cdot \ldots \cdot \phi_{4} \phi_{z}^{4}\right\rangle \\
& \\
& -\frac{1}{2!}\left(\frac{\lambda}{4!}\right)^{2} \int d^{4} x \int d d^{4} y\left\langle\phi_{1} \ldots \phi_{4} \phi_{x}^{4} \psi_{y}^{4}\right\rangle
\end{aligned}
$$

Number of equivalen contractions at $O(x)$

Convention for Fergumen rules
A.) Vertex Feynman rule is $-i \frac{\lambda}{4!}$, but we count the umber of constrictions
3) B.) Feynman rule is -id, but we heed to
 contractions arise.

Example:

A.) $-\frac{\Omega^{1}}{3}-\quad-i \frac{\lambda}{4!} 4 \cdot 3=-i \frac{\lambda}{2}$
B.) $\quad-\quad-i \lambda \frac{1}{2} \swarrow$ Symmetry factor

Mort of the times, one works with Teyumen pintles in momentum space. To obi then, one Fourier transforms the Legreagian

$$
\begin{aligned}
& -\frac{\lambda}{4!} \int d^{4} x \phi^{4}(x)=-\frac{\lambda}{4!} \iiint_{k_{1} k_{2}} \int_{k_{2}} \int k_{4} d d^{n} x e^{-i\left(k_{1}+\ldots+k_{4}\right) x} \\
& \int_{h} \equiv \int \frac{d^{4} k}{(2 \pi)^{h}} \quad \tilde{\phi}\left(k_{1}\right) \cdot \ldots \tilde{\phi}\left(k_{k}\right) \\
& \left.=-\left.\frac{\lambda}{4!} \iint_{k_{1}} \int_{k_{2}} \int_{k_{3}}(2 \pi)^{4} \delta^{4}\right|_{k_{n}}+k_{2}+k_{3}+k_{0}\right) \\
& \tilde{\phi}\left(z_{1}\right) \cdot \ldots . \tilde{\phi}\left(y_{n}\right)
\end{aligned}
$$

At tree-level, all momentum integrations can be performed trivially. Doing oo, leads to momertion conservation at each vertex, puts an overall momertans conservation δ-function. At higher orders integrals over the loop moment remain. let us now go through the procedure in QCD. The free Logreugian is

$$
\mathscr{L}_{0}=\sum_{f} \bar{\psi}_{f}(: \not \partial-m) \psi_{f} \quad-\frac{1}{4}\left(\partial_{\mu} \dot{A}_{\nu}-\partial_{v} A_{\mu}\right)^{2}
$$

$$
-\frac{1}{2(1-\xi)}\left(\partial^{\mu} A_{p}^{e}\right)^{2} \quad-\bar{\eta} \square \eta .
$$

Using integration ty part these quadratic parts of the action can be brought into the form $\phi_{i} D_{i j} \phi_{j}$, where $D_{i j}$ is a differential oplotor. The inverse is mort easily token in Fourier spree, rementring that i $\partial_{\mu} \cong k \mu$.

In this way, one finds

$$
\left\langle{\underset{\sim}{i}+}_{\psi_{i \alpha}^{f}}(x) \bar{\Psi}_{j \beta}^{f}(y)\right\rangle=\int_{k}\left(\frac{i}{k-m_{f}+i \varepsilon}\right)_{\alpha \beta}(11)_{i j} e^{-i k(x-y)}
$$

Usually the quark color and spin indeces cire kept implicit. For the glow propretor in Funner ope one has ado-diagonal

The only new element, compared to QED is the short propagator

$$
\left\langle\eta^{a}(x) \bar{\eta}^{-b}(y)\right\rangle=\int_{k} \frac{i}{k^{2}} \delta^{a b} e^{-i k(x-y)}
$$

The ghost field is arenoted by a dotted line. we put an arrow to indicate particle flow. Note that the gur field las a bosonic propogetor, but anticommertes. This is unpllysicel, but ok sine the role of the ghosts is to cancel unphyical contritutions from the show field!

Next, lets derive the vertices.

$$
\begin{aligned}
\mathscr{L}_{\text {Int }}= & g A_{\mu}^{a} \bar{\psi} \gamma^{m} t^{c} \psi-g f^{a b c} \partial^{\beta} A^{\alpha, \beta} A_{\beta}^{b} A_{\alpha}^{c} \\
& -\frac{g^{2}}{4} f^{a b e} A_{\alpha}^{a} A_{\beta}^{b} f^{c d e} A_{\alpha}^{c} A_{\beta}^{d}
\end{aligned}
$$

$$
-g f^{a b c} \dot{\eta}^{-a} \partial^{\mu} A_{\mu}^{c} \eta^{b}
$$

The firct term yields the quack glwon wtex

$$
i g\left(\gamma^{m}\right)_{\beta \alpha}\left(t^{a}\right)_{j i}
$$

The second term is a three-ghon interaction since we want to sepserete the externel fields, we firt rewnite

$$
\begin{aligned}
&-f^{s b c}\left(i \partial^{\beta} A_{\alpha}^{c}\right) A_{\beta}^{b} A_{\alpha}^{c} \\
&=-f^{a b c}\left(i \partial^{\beta} A_{\alpha}^{a}\right) A_{p}^{b} A_{g}^{c} g^{\alpha \gamma}
\end{aligned}
$$

It's Founer transform is

$$
\begin{aligned}
& \underset{\Gamma x g^{3} 3 q}{\xi^{\alpha \alpha} p} \quad \hat{a} \\
& \text { +" permuntations" }
\end{aligned}
$$

we follow the convention B.) and the Feyumer rule is the sum over all 3 ! permutations of the external gluon fields:

$$
\begin{aligned}
& \varliminf_{3}^{2 \alpha p}=-g p^{\alpha} g^{\alpha \theta} f^{\alpha b c} \\
& -g g^{\gamma} g^{\beta \alpha} f^{c o b} \\
& -g r^{\alpha} g^{\gamma \beta} f^{b c a} \\
& -g g^{\alpha} g^{\beta \gamma} f^{b a c} \quad+(1 \ll l) \\
& -g p^{\gamma} g^{\alpha \beta} f^{c b c} \text { cost } \\
& -g r^{\beta} \cdot g^{\gamma \alpha} f^{a c b} \\
& =+g f^{a b c}\left[(p-q)^{\gamma} g^{\alpha \beta}+(q-r)^{\alpha} g^{\beta} \gamma\right. \\
& \left.+(r-p)^{\beta} q^{\alpha \gamma}\right]
\end{aligned}
$$

Similarly, the gluon tern is obtained as

$$
\begin{aligned}
\hat{\varrho}- & -i \frac{g^{2}}{4} f^{a b e} f^{c d e} g_{\alpha \gamma} g_{\beta \delta} \\
& +{ }^{\text {n permutations }}
\end{aligned}
$$

In this case, we have 4! permutations of which always 4 are equivalent. This gives

$$
\begin{aligned}
& -i g^{2} f^{\text {abe }} f^{c d e}\left(g_{\alpha \gamma} g_{\beta \gamma}-g_{\alpha \delta} g_{\beta \delta}\right) \\
& -i g^{2} f^{\text {ace }} f^{b d e}\left(g_{\alpha \beta} g_{\gamma \delta}-g_{\alpha \delta} g_{\beta \gamma}\right) \\
& -i g^{2} f^{\text {ode }} f^{b c e}\left(g_{\alpha \beta} g_{\gamma \delta}-g_{\alpha \gamma} g_{\beta \delta}\right)
\end{aligned}
$$

for the fall Fyurren rule.

Finally, we heed the ghost - glom vettex

(we have integrated by part to mare the derivative to the outgoing gluort live and use an oletgoing maneetum!)

