Chiral Perturbation Theory (CHPT)
We briefly encountered the concept of an Effective Field Theory (EIT) before, when discussing heavy flavors. The basic idea is that it should te possible to wite down a theory with just the degrees of freedom that are present at a given energy. In QCD the low-energy degrees of freedom are hadrons (i.e. $\pi^{\prime} s, k^{\prime} s, \ldots, p, n, \ldots$), not quarks and glows. At very low energy it should be possible to construct a Lagrangian involving only the Lightest hodrows $\mathcal{L}_{\text {eff }} \equiv \operatorname{L}_{\text {eff }}\left(\pi^{r}, \pi^{\prime}, \pi^{\circ}\right)$. By taking into account the
symmetries of $Q C D$, one can organize Left and obtain 4 predictive framework: CHPT.

Chiral symmetry
At low energies, we can integrate out the heavy quark flavors and use *

$$
\mathscr{L}_{Q C D}^{e f f}=\sum_{f=u, d, s} \Psi_{f}(i \phi-m) \psi_{f}-\frac{1}{4} G^{m, s} G_{m, c}
$$

For the symmetry arguments, we could also work with the full $\mathcal{L a c s}$.

The theory simplifies further, if we take the chiral limit $m_{s} \rightarrow 0$. Since only the mess distinguishes the quarks, we can rotate one flavor into chother, i.e. we have a symmetry

$$
\psi=\left(\begin{array}{l}
u \\
d \\
s
\end{array}\right) \rightarrow \psi^{\prime}=V\left(\begin{array}{l}
u \\
d \\
s
\end{array}\right)
$$

Unitary 3×3 matrix
In feet, without the moss term, we have

$$
\bar{\psi} i \not \subset \psi=\bar{\psi}_{L} i \nsim \psi_{L}+\bar{\psi}_{R} i \varnothing \psi_{R}
$$

with $\psi_{G}=\frac{1}{2}\left(1-8 e_{5}\right) \psi ; \psi_{R}=\frac{1}{2}\left(1+y_{5}\right) \psi$.
we theref ore cen consider the independent unitary rotations

$$
\psi_{L} \rightarrow V_{L} \Psi_{L} ; \Psi_{R} \rightarrow V_{R} \Psi_{R}
$$

Please note: V_{L} and V_{R} are global flavor rotations, while the local sh(N_{2}) symmetry sets in the colder space of the individual flavors.

Let us paremcterige

$$
V_{L, R}=\exp \left[\begin{array}{c}
i \alpha_{L, R}+i t^{a} \alpha_{L, R}^{a} \\
\uparrow \\
u(1)
\end{array}\right.
$$

For two massless flavors $\psi=\binom{4}{d}$ the generators are the Pauli matrices $t^{a}=\sigma / 2, s=1,2,3$. With three massless flavors $\Psi=\left(\begin{array}{l}h \\ d \\ s\end{array}\right)$, we have $t^{a}=\lambda^{a} / 2, \varepsilon=1 . .8$, the Gell-man matrices.

For each symmetry, we obtain a classically conserved current, which according to Noether's theorem is

$$
j^{\mu} \propto \frac{\delta \mathcal{L}}{\delta\left(\partial_{\mu} \psi\right)} \delta \psi=\bar{\psi} \gamma_{\mu} \cdot \delta \psi
$$

we thus end up with currents:

$$
\begin{aligned}
& L_{\mu}=\bar{\psi}_{L} \gamma_{r} \psi_{L} ; L_{\mu}^{a}=\bar{\psi}_{L} \gamma_{r} t^{a} \psi_{L} \\
& R_{r}=\bar{\psi}_{R} \gamma_{r} \psi_{R} ; R_{\mu}^{a}=\bar{\psi}_{R} \gamma_{r} t^{a} \psi_{R}
\end{aligned}
$$

It is also useful to consider the vector and axial currents

$$
\begin{aligned}
& V^{m}=L^{r}+R^{r}=\bar{\psi} \gamma^{r} \psi \\
& A^{r}=R^{r}-L^{r}=\bar{\psi} \gamma^{r} \gamma^{s} \psi
\end{aligned}
$$

and analogously V_{r}^{a}, A_{r}^{a}.
It turns out that the axial current is anomalous, $\partial_{\mu} A^{N} \neq 0$ due to quantum effect. Ore con derive that

$$
\text { that } \partial_{\mu} A^{\mu}=\frac{N_{c} g_{s}^{2}}{32 \pi^{2}} \varepsilon_{p v p \sigma} G^{+v, a} G^{p \sigma, a}
$$

The remaining $\operatorname{su}_{L}(3) \times \operatorname{sun}_{R}(3) \times U_{V}(1)$ transformations
are a symmetry of the quantum theory and each current has an associated conserved charge

$$
Q_{k}=\int d^{3} x \dot{j}_{k}^{0} \quad \operatorname{mit}\left[H-1, Q_{k}\right]=0
$$

For 3 mesoless flavors, we have $2 \times 8+1$ conserved charges $Q_{v}, Q_{V}^{a}, Q_{A}^{a}$.

When a theory has a summery, one should ask whether the spectrum is also symmetric. If not, one says that the symmetry is spontaneously broken. Vafa $\&$ witter were able to shim in 184 that vector -like symmetries are hot sponteneourly broken in vector-libe theories like QCD, so only Q_{A} could te broken.

Let us consider the two possibilities in three for $N_{f}=3$ massless quarks.
A.) Unbroken symuetry $Q_{A}^{a}|0\rangle=0$
spectrum contains degenercte multiplets
of $G=\operatorname{sun}_{L}(3) \times \operatorname{sun}_{R}(3)$.
B.) Broken symmetry $Q_{A}^{a}|0\rangle \neq 0$

- Multiplets of $\mathrm{SU}_{v}(3)$
- $N_{f}^{2}-1=8$ masslurs Godistone bosous (om GB for ead troken geveretor)

A coreful derivation of Goldstone's theorem shows thet if the correletor

$$
\langle 0|[Q(t), O(t, \vec{x})]|\circ\rangle
$$

brokes symm

operator with quantum nunter of GB
is honpero, then the theory murt contrin c massless boson with quentum numbirs of O

In $Q C D$, one can choose $O=P^{a}=\Psi_{\gamma_{5}} t^{a} \psi$, the psendosealer current. One can show that (exercise)

$$
\begin{aligned}
& \langle 0|\left[Q_{A}^{a}, P^{a}(x)\right](0\rangle=\frac{-1}{N_{f}}\langle 0| \bar{\psi}(0) \psi(0)|0\rangle \\
& =-\langle 0| \bar{u} u|0\rangle=-\langle 0| \bar{d} d|0\rangle=-\langle 0| \bar{s}|0\rangle \\
& \uparrow \\
& \operatorname{sun}_{v}(3)
\end{aligned}
$$

The quantity $<0 \mid \Psi \psi(0)=\left\langle 01 \bar{\psi}_{L} \psi_{R}+\bar{\Psi}_{R} \psi_{L} \mid 0\right\rangle$ is called the quark condensate and breaks chiral symmetry. A nonvanishing quark condousete implies that chiral sygmen. is broten and that there are 8 psendosealer GBs.
of course, the quart masses are hon-zero and chiral symmetry is not exact. On the other hond, since the $4-, d-, s$-masses are sunell, one can treat the symmetry breasting thees
term as perturbation.

Looking at the QCD spectrum, one finds three misous π^{+}, π^{-}, π^{0} which are quite light $m_{\pi} \approx 140 \mathrm{Mel}$. They lave spin 0 and are psendo-scalars. It is plausible that they are the $\operatorname{su}(2)$ triplet of "Goldstone bosons" associated with the breaking of chiral symmetry in the $\binom{n}{d}$ sector:

$$
\operatorname{su}(2) \times s u_{R}(2) \rightarrow S u_{V}(2)
$$

Since the syunebry is explicitly broker by the small up-and down-qualle messes, these psendo Goldstone Bosons (pGB) acquire a smell mass.

