Calorimeter and jet reconstruction

M. Weber
(knowledgeable... but not expert)

Jet energy measurement with the ATLAS detector in proton-proton collisions at $\sqrt{s} = 7$ TeV, arXiv:1112.6426v1
Temperaturänderung:

\[\Delta T = \frac{\Delta E}{C} \]

mit \(\Delta E = \) Energieverlust des einfallenden Teilchens
\(C = \) Wärmekapazität von Wasser

Man braucht 1 kCal, um 1 Liter Wasser um 1° zu erhöhen.

1 kCal = \(1000 \times 2.61 \times 10^{-19} \) eV
= \(2.61 \times 10^{22} \) eV
= \(2.61 \times 10^{13} \) GeV = \(2.61 \times 10^{7} \) TeV
Jet reco basics

• **Jets** used for ATLAS physics analyses are reconstructed by a jet algorithm starting from the energy depositions of **electromagnetic and hadronic showers** in the **calorimeters**.

• The jet Lorentz four-momentum is reconstructed from the corrected energy and angles with respect to the primary event vertex.
EM and Hadronic showers

Detector Effects On Jets

Change of composition
- Radiation and decay inside detector volume
- “Randomization” of original particle content

Defocusing changes shape in lab frame
- Charged particles bend in solenoid field

Attenuation changes energy
- Total loss of soft charged particles in magnetic field
- Partial and total energy loss of charged and neutral particles in inactive upstream material

Hadronic and electromagnetic cascades in calorimeters
- Distribute energy spatially
- Lateral particle shower overlap

By P. Loch
Detector Effects On Jets

Change of composition
Radiation and decay inside detector volume
“Randomization” of original particle content

Defocusing changes shape in lab frame
Charged particles bend in solenoid field

Attenuation changes energy
Total loss of soft charged particles in magnetic field
Partial and total energy loss of charged and neutral particles in inactive upstream material

Hadronic and electromagnetic cascades in calorimeters
Distribute energy spatially
Lateral particle shower overlap

By P. Loch
Detector Effects On Jets

Change of composition
- Radiation and decay inside detector volume
- "Randomization" of original particle content

Defocusing changes shape in lab frame
- Charged particles bend in solenoid field

Attenuation changes energy
- Total loss of soft charged particles in magnetic field
- Partial and total energy loss of charged and neutral particles in inactive upstream material

Hadronic and electromagnetic cascades in calorimeters
- Distribute energy spatially
- Lateral particle shower overlap

By P. Loch
Detector Effects On Jets

Change of composition
Radiation and decay inside detector volume
“Randomization” of original particle content

Defocusing changes shape in lab frame
Charged particles bend in solenoid field

Attenuation changes energy
Total loss of soft charged particles in magnetic field
Partial and total energy loss of charged and neutral particles in inactive upstream material

Hadronic and electromagnetic cascades in calorimeters
Distribute energy spatially
Lateral particle shower overlap

By P. Loch
Detector Effects On Jets

Change of composition
Radiation and decay inside detector volume
“Randomization” of original particle content

Defocusing changes shape in lab frame
Charged particles bend in solenoid field

Attenuation changes energy
Total loss of soft charged particles in magnetic field
Partial and total energy loss of charged and neutral particles in inactive upstream material

Hadronic and electromagnetic cascades in calorimeters
Distribute energy spatially
Lateral particle shower overlap

By P. Loch
Particle jets

- The **jet** energy calibration relates the jet energy measured with the ATLAS calorimeter to the true energy of the corresponding **jet of stable particles** entering the ATLAS detector.
- “Track jets”: for systematic studies and calibration purposes, built from charged particles using their momenta measured in the inner detector.
– Absorber (passive) and detector (active) layers
– Fluctuations in visible energy: "sampling fluctuations" due to variation of the number of charged particles in the detector
Energy resolution

• Statistical fluctuations
 – In the number of particles in the shower
 – In the number of escaping or undetected particles

• Noise
 – Electronic noise
 – Pile up

• Constant
 – Dead material
 – Calibration errors
 – Mechanical imperfections

\[
\frac{\sigma(E)}{E} = \frac{a}{\sqrt{E}} \oplus \frac{\sigma_n}{E} \oplus \text{constant}
\]

• Higher energy -> better resolution
ATLAS jets

• Use **Anti-kt** with R=0.4 or R=0.6

• Jet finding is done in y-phi coordinates
• Corrections are often done in eta-phi coordinates
• Jet p_T reconstruction threshold is $p_T > 7$ GeV
• **Inputs are:** topological clusters or towers (next slide)
• Topological clusters
 – groups of calorimeter cells that are designed to follow the shower development
 – Start from a seed cell with S/N>=4, iteratively add cells with S/N>=2
 – A splitting procedure exists
 – E = Sum(Ecell), M=0 GeV,

• Towers
 – static, eta x phi = 0.1x0.1, grid elements built directly from calorimeter cells
Efficiency

<table>
<thead>
<tr>
<th></th>
<th>Loose</th>
<th>Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEC spikes</td>
<td>($f_{HEC} > 0.5$ and $</td>
<td>f_{HECquality}</td>
</tr>
<tr>
<td>Coherent EM noise</td>
<td>$f_{EM} > 0.95$ and $f_{quality} > 0.8$ and $</td>
<td>\eta</td>
</tr>
<tr>
<td>Non-collision background</td>
<td>$</td>
<td>t_{jet}</td>
</tr>
<tr>
<td></td>
<td>or ($f_{EM} < 0.05$ and $</td>
<td>\eta</td>
</tr>
</tbody>
</table>

Table 1: Selection criteria used to reject fake jets and non-collision background.

![Graph](image)
Here the ‘fun’ begins...
Calibration

- **Calorimeter non-compensation**
 partial measurement of the energy deposited by hadrons

- **Dead material**
 energy losses in inactive regions of the detector

- **Leakage**
 energy of particles reaching outside the calorimeters

- **Out of calorimeter jet radiation**
 energy deposits of particles inside the truth jet entering the detector that are not included in the reconstructed jet

- **Noise thresholds and particle reconstruction efficiency**
 signal losses in the calorimeter clustering and jet reconstruction
Jet response

- Based ok MC (without MPI, as offset already corrected)
- Lines depicts the eta boundaries for the corrections, which will be averages
ATLAS knows several correction ‘levels’

• Start from ‘EM scale’
 – Apply an absolute calibration derived from test-beam measurements based on EM-showers
 • Test with muons (test-beam, MC, cosmics)
 • Test with Z-> ee

• Apply a ‘simple’ JES
 – Correct for lower detector response to hadrons
 – Cell based

• More ‘realistic’ scales
 – Cluster-by-cluster, jet-by-jet
 – Use in-situ calibrations
• Closure?
• Uncertainties at the level of 0.5%
• -> Systematic

Measure the top quark mass to $m_t = 173.2 \pm 0.9$ GeV (= 0.5%)... (arXiv:1207.1069)
Other Corrections

• *Pile-up correction*: average additional energy due to additional proton-proton interactions (correction from *in situ* measurements)

• *Jet origin correction*: Correct the direction of the jet to originate from the primary vertex, no effect on energy

• *Jet energy and direction correction*: Correction based on constants derived from the comparison of the kinematic observables of reconstructed jets and those from truth jets (MC).
Off-set due to pile-up

- Actually corrected for before the hadronic energy scale is restored, such that the derivation of the jet energy scale does not depend on it

Prog.Part.Nucl.Phys.
60:484-551,2008
DO Jet Energy Scale cake

Essentially valid for ATLAS too
Offset

- Depends on eta, NPV, bunch spacing
- Also depends on the number of towers in a jet (area, but not trivial depending on jet algorithm)
- Shown: jet offset, based on tower offset
Uncertainty

(a) $0.3 \leq |\eta| < 0.8$
Beyond the simplistic EM+JES

• The EM+JES calibration facilitates the evaluation of systematic, but the energy resolution is rather poor and it exhibits a rather high sensitivity of the jet response to the flavour of the parton inducing the jet

• Global calorimeter cell energy density calibration (GCW)
 – jet is calibrated as a whole, longitudinal weights
 – attempts to assign a larger cell level weight to hadronic energy depositions in order to compensate

• Local cluster calibration (LCW)
 – cluster shape variables characterize the topology of the energy deposits of electromagnetic or hadronic showers
 – “Local”, from simulation, without considering the jet context
Next... Split the jet in sub-jets

By P. Loch